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ABSTRACT

The standard model (SM) of particle physics has been a very successful theory for decades; however,

several features remain unexplained. One such feature is the mechanism of electro-weak symmetry-

breaking. The Higgs mechanism is postulated as part of the SM to give us the masses of the W� and

the Z0 bosons in a manner consistent with unitarity. The Higgs boson is a consequence of the mechanism

currently used. It is massive, and has the quantum numbers of the vacuum; i.e. it is a scalar. Also,

the pattern of fermion (quark and lepton) masses is yet to be understood. Technicolor introduces a

new force and particles (techniquarks and technileptons), which can break electroweak symmetry and

generate the vector boson masses without introducing fundamental scalars. Along with some necessary

extensions to the theory, technicolor provides the known fermion masses, and it also predicts many new

\techni-mesons."1 Previous searches for various technicolor channels have been performed throughout

the high-energy physics community at CERN on the L3 and DELPHI Experiments, and at Fermilab

on the CDF and D� Experiments.2 At the D� experiment, we use neural networks to search for

the lightest techni-mesons in a sample of bb data at the Tevatron. They are the techni-! (!T ) and

its mass-degenerate techni-� (�0T ), which decay to a  and a techni-pion (�T =�
0
T ). For the technicolor

models considered, the �T =�
0
T decays predominantly to bb. This analysis searches for !T =�

0
T production

using many Monte Carlo signal samples on the M(!T ) vs. M(�T ) mass plane. No evidence was found

for the production of neutral technicolor particles in this channel, and 95% con�dence level upper limits

on cross-section � branching ratio (� �BR) are computed.

1E. Eichten, K. Lane and J. Womersley, \Finding Low-Scale Technicolor at the Tevatron," Phys. Lett.
B405 305 (1997), hep-ph/9704455; E. Eichten, K. Lane, \Low-Scale Technicolor at the Tevatron," Phys.
Lett. B388 803 (1996), hep-ph/9607213.

2K. Lane, \Technicolor Signatures{ Ieri, Oggi E Domani," hep-ph/0006143 (July 2000). This ref-
erence has compiled several searches for technicolor and is also a good summary of technicolor phe-
nomenology that is within observational range of current and near-future experiments.
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1 INTRODUCTION

Historically, mass has been an entirely empirical concept. It is a quantity that must be measured

either directly or indirectly. It determines the gravitational pull between two bodies. In classical

mechanics it is an essential part of Newton's second law

�!
F =M�!a ; (1.1)

where
�!
F is the applied force on a body of mass, M , and �!a is the resulting acceleration. One way to

measure an unknown mass using Equation 1.1 is to use the acceleration, astd, produced by a standard

force onto a standard mass; then the unknown mass may be computed relative to the standard mass

by its acceleration, aunk, under the standard force. i.e.

Munk =Mstd
astd
aunk

: (1.2)

In other words, we only know the mass of a given object by comparison with an arbitrary standard. It

is not yet understood from �rst principles. Mass is also present in other relationships. For example, in

the theory of relativity, mass is equivalent to energy as shown by the equation

E =Mc2; (1.3)

where c is the speed of light (299,792,458 meters/second). This fact allows high-energy physicists to

specify mass in units of energy, where the favorite unit of mass is the GeV or giga-electron volt (in units

of c = 1.). In addition, objects which have zero mass (photons for instance) travel at the speed of light,

and objects which have a non-zero mass must travel less than the speed of light. In the theory of general

relativity, mass is postulated to produce curvature in local space-time. This curvature causes light to

bend in the vicinity of a massive body, local time intervals to dilate, and is also the mechanism behind

the gravitational force. Mass also plays an important role in quantum �eld theory which describes the
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motions and interactions of particles.

In the standard model, particle masses are generated by postulating the Higgs mechanism. Without

the Higgs mechanism, the gauge bosons described by the local gauge-invariant Lagrangian density must

be massless. This is �ne for interactions involving the photons of the electromagnetic force and the

gluons of the strong force. However, the W� and Z0 particles of the weak interaction are very massive,

where M(W�) = 80:42 GeV; andM(Z0) = 91:19 GeV [1]. For comparison, recall that the mass of

the proton is 0:938 GeV! The Higgs mechanism starts with the original local gauge symmetry which

generated the mathematical form (SU(2)L) of the weak interaction. The \o� center" ground state (or

vacuum) of the Higgs potential breaks the local gauge symmetry. The new free �elds are best expanded

about the new minimum to facilitate the use of perturbation theory to perform calculations. With

the correct \gauge rotation" chosen, the masses of the weak vector bosons, the W� and Z0, become

apparent. A Higgs particle (spin-0, therefore a boson) is also predicted by this construction, and the

coupling of the new Higgs boson to the quarks and leptons of the standard model allows them to also

have mass [2, 3].

The nature of the scalar �eld that is the basis of the Higgs mechanism is not known. It must

have the same quantum numbers as the vacuum, however, but it could also be composite { made of

more fundamental particles that add up to give a scalar. This analysis searches for particles that may

implicate a new force, called technicolor. Technicolor may be the cause of the Higgs mechanism. The

idea of technicolor is inspired by chiral symmetry breaking in QCD. At low temperature, the ground

state, or vacuum, of quantum chromodynamics (QCD) must have no charge, no net angular momentum

(spin), and no momentum. In order to accomplish this with fundamental spin-1=2 particles (quarks),

particles of opposite spin, charge and momentum forms this vacuum \condensate," which necessarily

leave a net handedness. This non-zero chriality of the vacuum is what creates a potential like the Higgs

potential mentioned above. Hence, technicolor begins with a chiral symmetry of techniquarks and

technileptons, where the techniquarks fall under a higher-scale version of the strong force. Hence, chiral

symmetry breaking by bound states of techniquarks is the mechanism behind electroweak symmetry

breaking [4, 5, 6].



3

2 THE STANDARD MODEL

In 1979, Sheldon Glashow, Steven Weinberg, and Abdus Salam received the Nobel Prize in physics

for the discovery of what is known today as the \3 { 2 { 1" standard model. This was the culmination

of several decades of work from these individuals, and many colleagues. The standard model (SM)

is a quantum �eld theory that describes how the known particles interact via three of the four forces

in nature: electromagnetism and the weak and strong forces [7, 3]. It is not currently known how to

incorporate the gravitational interaction to obtain a single �eld theory.

There are three major components of the standard model:

1. The known spectrum of fundamental particles: quarks, leptons, and mediators.

2. The mathematics and the set of assumed underlying ideas that include the following:

� Lorentz invariance

� Quantum mechanics with 1st and 2nd quantization, where 1st quantization introduces the

commutation rules for cannonical variables such as momentum and position. Second quan-

tization introduces commutation (anti-commutation) rules for boson (fermion) creation and

annihilation operators.

� Noether's theorem: Given a symmetry, there is a corresponding conserved quantity. These

conserved quantities include energy, momentum, angular momentum, charge, spin, etc.

� The principle of least action

� Unitarity. When all �nal states are taken into account, the total probability of those states

is 1.

� Any new force is described by introducing a local gauge (or phase) invariant group. \Ro-

tations" in this group correspond to new conserved currents. For a given SU(N) group of

dimension N , there are N2� 1 independent generators of rotation. Each of these generators

is paired with a massless mediating particle, which communicates the interaction between

particles.
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� Simplicity: Use the minimum structure needed to describe known phenomena. For instance,

quantum numbers not known to be correlated (such as color and charge) are designed to

commute, by construction.

� Spontaneous symmetry breaking. Nature is seen to select a vacuum (ground state), which

is not invariant under SU(2)L transformations, which is a symmetry of the weak force. The

Higgs mechanism breaks this symmetry and provides for the masses of the W� and Z0

vector bosons. In addition, fermion masses are allowed and a new particle, the Higgs boson,

is generated.

3. The speci�c group structure: SU(3)C 
 SU(2)L 
 U(1)Y

� SU(3)C is the group which represents the structure of the color (strong) interaction. The

quantum number of this group is the color-state which takes on the values of red, green, or

blue. The eight massless gluons are the mediators of the color force.

� SU(2)L represents the left-handed \sector" of the electroweak force. The conserved quantum

number is the weak isospin, I , with the particular component of that isospin, I3. The word

\isospin" is chosen to strike the analogy with spin, which is also an SU(2) quantum number.

For example, left-handed electrons have a weak isopin of �1=2 and its associated electron-

neutrino +1=2. Right-handed particles are weak isospin singlets (I = 0). The W� and Z0

bosons are the mediators of this sector.

� U(1)Y , where Y = 2(Q � I3) is the weak hypercharge. This is chosen instead of just the

particle charge, Q, in order to separate out the left-handed (V �A) sector. This separation is
a result of parity violation in weak decays (right-handed neutrinos have not been observed).

The photon, along with the U(1) component of the Z0 are the mediators. At low energies,

E << MZ , this reduces to the electromagnetic force.

Within the standard model framework, the electromagnetic force, mediated by the photon, pro-

pogates light, and the electric and magnetic forces. The photon is a quantum of energy and one unit

of spin (angular momentum), and is therefore a boson. It does not carry an electric charge. As a

result, the photon, to �rst order, does not interact directly with other photons. The photon is also

massless. Hence, the electromagnetic potential between charged particles is long range and is inversely

proportional to the distance between them (� 1=r).

The weak force, now uni�ed with electromagnetism, is seen experimentally in the decays of long-

lived particles. One example of this is � decay seen in nuclear physics experiments, such as the decay
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of the neutron, n ! p e� �e, or the long lifetime of particles, such as the charged pion which decays

via �� ! W� ! ���. The mediators for this force are the W
� and Z0 particles. The weak force is

comparable in strength with the electromagnetic force at high energies. Otherwise, the weak force is

associated with relatively rare processes, since the weak gauge bosons are quite heavy. In fact, due to

their masses, they were not discovered directly until the early 1980's. Due to the masses of the weak

vector bosons, the potential of the weak force is proportional to � e��r=r.

The strong force is the strongest force currently known. It governs the interactions between quarks,

and ultimately holds atomic nuclei together. The extraordinary density of a typical nucleus (15 orders

of magnitude more dense than normal matter) is a testament to the very high binding energy created

by the strong force. The gauge bosons mediating this force are called gluons, and they carry their

own version of charge, called color, of which there are three: red, green and blue. Gluons carry a net

color charge allowing them to couple and exchange color with other gluons. Mathematically, this is a

consequence of the non-abelian (or non-commuting) generators of the color-SU(3) local gauge symmetry

group. There are eight independent generators of this group, corresponding to eight gluons, each

possessing di�erent color-anticolor combinations. Also, gluons are massless and thus readily created.

These facts, combined with the interplay between the number of colors (3) and the number of quarks

(6) means that the potential between two quarks increases linearly with distance. At least qualitatively,

these ideas suggest that quarks are con�ned to colorless bound states of qq (mesons) or to qredqgreenqblue

(baryons). This remarkable theory of strong interactions describes a very broad range of measurements,

and is consistent with the spectrum of mesons and baryons and with the existence of quark and gluon

\jets" seen in high-energy physics experiments today.

The current standard model has been successful in describing the many phenomena of the known

particles. However, the standard model is not complete. Contained within it is the Higgs mechanism,

which is put in by hand in order to generate the masses of the W� and Z0 bosons and to break

electroweak symmetry. The Higgs �eld may be thought of as a \place holder" used to parameterize

electroweak symmetry breaking. The Higgs mechanism is likely to be a product of a deeper symmetry,

however.
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3 TECHNICOLOR THEORY

Technicolor was introduced by Weinberg & Susskind in 1979 to explain Electro-Weak Symmetry

Breaking (EWSB) [8]. The symmetry breaking scheme in technicolor involves a QCD-like force which

operates at or below the EWSB scale. The symmetry-breaking occurs in the breaking of chiral symmetry

in the technicolor SU(NTC)L
SU(NTC)R Lagrangian, where NTC is the number of technicolors. This

chiral symmetry breaking is analogous to that found in QCD, where the vacuum (qq \condensates")

has a non-zero chirality due to conservation of spin (that must be zero), and momentum (also zero for

the vacuum). In technicolor, techni-pions are the goldstone bosons that take the place of fundamental

scalars. For example, the longitudinal components of theW� and Z0 bosons (which allow them to have

mass) are techni-pions in the technicolor theory. Furthermore, gauge bosons in the extended technicolor

(ETC) theory give mass to the standard model (SM) fermions. This happens through a Higgs-like

coupling (via ETC gauge bosons) between technifermions and quarks/leptons of the standard model.

Extended technicolor is a gauge �eld theory, which itself breaks to technicolor, color, and electro-weak

symmetries [5, 6].

The original technicolor concept needed modi�cations to explain developments in known phe-

nomenology, including better limits on avor changing neutral currents (FCNC), and the discovery

of the high mass of the top quark. This modi�cation involved a \walking" coupling constant, where the

coupling changes more slowly as a function of Q2 than does the \running" of �S. The large mass of the

top quark requires a symmetry in addition to extended technicolor to give the known mass, since ETC

cannot do this by itself. This additional symmetry is called top-color, and only operates on the third

quark and lepton family.

This analysis searches for evidence of a technicolor model put forth by Eichten, Lane, and Womersley

in 1997 [5], and updated in 1999 [6]. This model is only available in the pythia high-energy physics

event generator [14]. We search for the lightest technimesons via !T =�
0
T !  �T =�

0
T ! bb , where the

masses of �T and !T =�
0
T are allowed to vary in 20 GeV intervals on a \mass plane." Figure 3.1 shows the

leading order (LO) diagram for producing !T =�
0
T assuming that only the indicated diagram contributes
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signi�cantly to the scattering cross{section. Because the !T and �0T are considered to be degenerate and

not distinguishable in this analysis, the symbol, !T , is used to discuss the mass eigenstate. Similarly,

the �T is degenerate with the �0T , so unless the states need to be distinguished, they will be referred to

as �T . The �
0
T , which contains a gg decay mode, was left out of the original version of pythia.

Within the framework of technicolor, the longitudinal components (or polarization) of the massive

vector-bosons, Z0
L andW�

L , are considered to be techni-pions. Recall that the existence of a longitudinal

(helicity of zero) polarization implies a rest frame for the particle. This, in turn, means that the W�
L

and Z0
L must each have non-zero mass, since only massive particles have a rest frame in the theory of

special relativity.

Figure 3.1 Leading-Order (LO) diagram for Techni-Omega production. In this

case, the Z0 or  may be produced \o� mass shell" and thus can

mix with the !T =�
0
T , since the quantum numbers (S = 1; Q = 0,

color singlet, etc.) are the same.

The ETC gauge bosons couple most strongly between techni-fermions and the most massive standard

model (SM) fermions. Therefore, the preferred �T decay is to bb (for �T mass below the tt threshold).

As a result, a search for technicolor is done by examining data taken at the D� experiment for excess

bb events. Appendix B discusses other searches for technicolor at collider experiments.
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4 THE D� EXPERIMENT: A COLLIDER DETECTOR

Introduction

There are two major ways that experimentalists study high energy phenomena in nature. The �rst

method involves collecting data on incoming particles from outer space with either space or earth-

based particle detectors. Typically, these experiments measure the direction, energy, and identity of

the incoming high-energy particles in order to tie them to a speci�c source and to infer its properties.

The focus and interest of these measurements is more on the possible source (such as active galactic

nuclei (AGN), decays of super-massive remnants of the big-bang, topological defects, etc.) that create

the incoming particles, and on the transport mechanisms of those particles through intergalactic or

interstellar space, rather than on probing their interactions with matter at the fundamental level.

Depending on the type, these particle uxes come from all directions in the sky, and at energies up

to 4� 1021 eV, with this highest energy having a ux on the order of � 1/year onto a typical cosmic

ray detector such as Fly's Eye [9]. Because the positions and angles of the incoming particles are not

initially known, these detectors typcally must have a very large collection area (or volume) in order to

detect enough events to do a given measurement. The dimensions of these detectors range from meters

to kilometers [10].

The second major way of studying high-energy phenomena involves directing a high-energy beam

of particles onto a �xed target, or at an oppositely directed beam of particles. A particle detector is

strategically placed to be able to record large amounts of data on the ensuing interactions between

beam and target matter. These detectors are able to make very detailed and precise measurements of

interactions because the intensity (or luminosity) and energy of the beam are typically well-known, and

the position of the interaction point is usually known to within a few cm, mm or perhaps even microns.

Thus, a very large amount of detection equipment may be trained on what happens in a small volume of

space. With the luminosities available today combined with current data-handling technologies, billions

of events may be used to make a given measurement. This allows physicists to study the inner workings

of matter to a distance scale roughly inverse to the energy of the beam, and sometimes much smaller,
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depending on the natural sensitivity of the measured quantity.

There are two major types of particle experiments operating today that use high-energy beams,

colloquially referred to as \�xed target" and \collider" experiments. The �xed target detectors are such

that the incoming particle beam is directed into either a solid, liquid, or gas at rest in the laboratory.

Thus, the center-of-mass energy ECM � p
2EbeamMrest is the amount of usable energy available for

illuminating the experimenters' favorite problem, where Mrest is the mass of the stationary target

particle. The products of the interaction shower forward in the direction of the beam, so the typical

geometry of the �xed-target detector has the detection equipment downstream from the interaction

point (IP). The only real disadvantage to the �xed-target technique is that, due to the conservation of

momentum, the usable energy for a hard interaction is somewhat less than the energy of the incoming

beam. Therefore, most �xed-target programs today are designed to make measurements that would

not be practical for a 4� collider detector, or if the masses of the target and beam particles di�er

signi�cantly. For instance, the NuTeV [11] detector at Fermilab is a �xed target system which facilitates

measurements of neutrino-nucleon scattering by incorporating a secondary �� beam (decayed from a

�+ or a �� beam). Since the neutrino usually needs to traverse a large amount of material before

interacting, detailed neutrino measurements are possible only in the �xed-target scenario.

The collider detector is the other major type of detector incorporated in high-energy physics, and it

uses colliding particle beams, a major jump in the technology of beams. Collider detectors are considered

to be the most versatile due to the energy available (ECM = 2Ebeam) to study the interactions, and the

variety of interactions that may take place and be studied. The basic geometry of the collider detector

is cylindrical where the beampipe de�nes the axis of the cylinder, and the expected IP is within several

centimeters (longitudinally) from the detector center inside and along the beampipe. Perpendicular to

the beam axis, the IP is usually known to within milimeters or microns. Bunches of particles from two

independent beams are directed headlong into each other to collide as close to the center of the detector

as possible. If the beam particles are of equal mass, then the center-of-mass energy available for a hard

interaction is the sum of the incoming beam energies in the lab frame. In that case, the center-of-mass

frame is at rest in the laboratory, and a hard scattering event will shower in all directions from the IP,

so collider detectors must have as close to 4� coverage as possible in order to be able to fully reconstruct

the event, where \reconstruct" means to determine the identities and momenta of all of the products of

the hard-scattering event, not counting the spectator interactions. One such detector operating today is

the D� experiment,shown in Figure 4.1, located at Fermi National Accelerator Laboratory in Batavia,

Illinois.
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D0 Detector

Figure 4.1 The D� detector. Shown are the central tracking, the calorimeter

and muon systems. The beam enters both sides of the detector

along the cylindrical axis. The pipe which is o�set from the center

is the beam-pipe for the main-ring. The Main Ring is the preac-

celerator for the Tevatron, and for historic reasons only clears the

Tevatron by about 90 inches at the D� interaction region.

The D� Experiment

The D� (or Dzero) experiment is a premier colliding-beam experiment in the �eld of particle physics.

It is served by oppositely directed beams of protons and anti-protons made to collide at or near the

center of the experiment. The main service beam at Fermilab, called the Tevatron, is the device which

delivers the counter-rotating beams of protons and anti-protons to the collider experiments. A similar

experiment, called Collider Detector at Fermilab (CDF) is the other collider detector using the Fermilab

Tevatron.

The D� detector is currently being upgraded for Run II at the Tevatron, and has begun taking

data as of April 2001. This upgrade has entailed rebuilding the tracking system and muon systems, and
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Figure 4.2 The D� calorimeter system detail.

upgrading the electronics to handle a much higher luminosity from the Tevatron. However, since the

data taken for this thesis was during Run I (from 1992-1996), the Run I version of the D� experiment

will be described.

The Run I version of the D� experiment [12] consists of several subsystems, starting from the center

and working radially outwards:

� Central Vertex detector

� Central tracking

� Forward tracking

� Transition Radiation detector

� \Level 0" hard-interaction detector

� Calorimeter (Central (CC), and Forward(EC)):
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Transition
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Figure 4.3 The D� central tracking system detail.

{ Electromagnetic (Central and Forward)

{ Fine hadronic

{ Coarse hadronic

� Inter-cyrostat detctor (ICD)

� Muon detector

As a whole, the D� detector is arranged in a roughly cylindrical manner around the Tevatron

beam pipe. The beam pipe is beryllium, and its relatively low number of interaction lengths keeps

interactions between the outgoing particles and the pipe material to a minimum. The hollow beam

pipe has a diameter of � 3 cm. To further reduce interactions between �nal state particles and the

beam-pipe, the beam-pipe material is made to be much thinner inside the detector than in the rest of

the Tevatron accelerator complex.

The three major systems in the D� detector are the tracking, calorimeter, and muon systems.

We want to non-destructively obtain the charged tracking information of the original particles coming

from the IP before they interact with very much material; therefore, the tracking system is closest

to the beampipe. This system, shown in Figure 4.3, is a 1m-radius cylinder of wire chambers and a

transition radiation detector. All of this is surrounded by the hermetically sealed liquid-argon sampling

calorimeter. Like the calorimeter, the tracking system is also on the ends of the detector, to give
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approximately 4� coverage, except for the narrow region along the beampipe at j�j > 4:5 (an angle of

� < 0:022 radians). The vertex tracking system (VTX) is the most central sub-system and occupies

a space of a little less than 1m in radius from the beam, and about 3:5m logitudinally. In order to

reconstruct a pp event, the position of the primary hard interaction (or \vertex") between the proton

and anti-proton beams needs to be determined. The VTX detector also contains tracking information

to assist in particle identi�cation, since charged particles leaving the interaction point (IP) can be

detected.

After the VTX, going radially outwards from the beam-pipe is the Transition Radiation Detector

(TRD). The TRD is mostly used to distinguish between electrons and pions by using the corresponding

X-ray light produced in the TRD when the particle in question crosses a material boundary (within

the TRD). Since this analysis focuses on photon identi�cation, the TRD is not used in the event

classi�cation.

Further outward, the Central Drift Chamber (CDC) is used to detect particle tracks outside of the

TRD, and is arranged in a cylindrical fashion as well. The CDC uses wire chambers with the wires

arranged axially with the z-axis of the detector. The Forward Drift Chambers (FDC) are North and

South end counterparts to the CDC. For each end of the detector, the FDC has three layers. The

one closest to the center has wires which run around the beam pipe in four straight-line segments to

measure the r�� of the charged particle. The middle one has wires that run radially to measure �. The
outermost layer complements the �rst layer by being rotated 45� to improve resolution and eliminate

left-right ambiguities.

Further out in r is the calorimeter, shown in Figure 4.2, which is the primary energy-measuring

device of D�. In general, particles that can be absorbed by the calorimeter material may have their

energies measured. These mostly include photons, electrons and jets (hadrons). The calorimeter system

consists of three completely separate volumes for ease of access to the tracking system and TRD. Those

sections are the central calorimeter (CC), and two end calorimeters (EC). To di�erentiate between the

two ends, the naming convention EC North (ECN), and EC South (ECS) is used. Each of the three

sections of the calorimeter are contained in large steel cylindrical containers for the ends, and a long

cylinder with the 1 m center removed to leave room for the tracking system, resulting in a donut-shape.

Inside the containers is the liquid argon-�lled sampling calorimeter. Generically, the unit cell of this

type of calorimeter is one layer of absorber material such as steel, copper, or uranium, followed by

an active detector region that measures charged particles showering from the absorbing material. An

e�ective calorimeter is designed with many of these cells deep as well as wide, so as to be able to record
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total energy as well as positional information of the original incoming particle. Eventually, this system

is calibrated using beams of known energy and identity, combined with detailed computer simulations.

Finally, the muon system is located furthest radius from the beam pipe, and therefore is at the

interaction point. This system uses a series of three cubical wire-chamber shells to detect the charged

muon. The energy is measured by placing a � 2 Tesla iron toroid magnet between layers 1 and 2. The

amount of bend in the path of the muon determines its momentum. Any muons that are produced in the

event will leave a minimum-ionizing trail in the calorimeter, but will not shower for two major reasons:

the energy loss due to bremsstrahlung is relatively low because it is proportional to the inverse square

of the mass of the muon, and ionization loss is inverse to the mass to the �rst power [13]. Additionally,

the muon is long-lived (2:2� 10�6 s, corresponding to c� = 660 m:). It is therefore useful to place any

muon detection equipment outside of the calorimeter, since nearly anything exiting the detector from

the IP would be a muon. Tau particles decay too quickly (usually in the tracking region) to have a

similar e�ect. Hence, the vast majority of outgoing particles from the detector will be muons. Since

muons are charged, the muon system uses a bending magnet in between layers of wire chambers in order

to detect and measure the energy of outgoing muons. No attempt is made to absorb the muon energy.

Therefore, except for the narrow angular region along the beam-pipe, muons, and weakly-interacting

neutral particles, the energy of an event is contained within the con�nes of the D� detector.

The Level � (L�) detector \wakes up" the electronics to possibly record the event. It consists of an

arrangement of hodoscopes on both the north and south ends of the calorimeter system. This detector

is most likely to �re when a hard interaction occurs. A hard interaction is one in which the momentum

exchange between p or p beams is some reasonable percentage (� 1% or higher) of the total beam

momentum. Most of the time, elastic or di�ractive interactions do not �re the Level � detector. For

most interesting events, both N and S ends of the L� will show a signal.

D� Coordinate System and Transverse Energy

Coordinates are needed to specify the locations of objects in the D� detector. The standard polar

coordinates used are �, �, and z. The z-axis is de�ned to be along the beam direction, with +z along

the proton direction, and �z along the anti-proton beam. The z coordinate is most often used to

specify the location of the event vertex { the location of the pp interaction within the detector. The

�-coordinate is an angle de�ned using the right-hand rule (with the thumb pointed in the direction of

the +z axis) to be the azimuth of a location \around" the beam direction. The scattering angle, �,
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from the +z direction is more often expressed in terms of the pseudo-rapidity:

� = �ln tan
�

2
(4.1)

Cartesian coordinates (x; y; z) are also used, and are de�ned in the right-hand sense as well. x and y

are the coordinates perpendicular to the z-axis.

The concept of transverse energy is very important in high-energy physics because before collision,

the beam starts out with zero total transverse energy or ET , de�ned to be

ET = E sin �: (4.2)

Momentum is conserved, so after a hard collision, when two objects are \back to back" in the detector,

and there is very little else showing in the detector, one may conclude that the transverse energies of

those objects are equal. ET is also useful when discussing neutrinos, which do not interact with the

detector. When large amounts of \missing ET " (or E/T ) are seen by taking the vector sum in the x; y

plane,

�!
E/ T = �

X
i

�!
E Ti ; (4.3)

where
�!
E Ti is the ET of every cell in the calorimeter, we may conclude that a neutrino was produced

by the event, or that the calorimeter energies for the event were mis-measured. Events with high

transverse-energy objects indicate a large momentum exchange between the proton and antiproton.

This is a very important indicator of a \hard" (or interesting) event.

Data Aquisition

During Run I, there are � 300; 000 pp crossings per second. However, the events of interest happen

much less frequently. This, combined with limitations in storage speed means that the data aquisition

system (DAQ) must be able to sift through this high rate in order to �nally write about 2 events per

second to tape, technically feasable at the time the DAQ was built in the early 1990's. To accomplish

this, a three-level triggering system is used at D�. They are the level � (L�), level 1 (L1), and

level 2 (L2) triggers. Due to the tradeo� between speed and complexity, the L� and L1 triggers are

hardware-based, where the L2 system uses software to make the �nal selection.
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L� makes the initial decision to keep an event by detecting particles scattered signi�cantly away

from the beam-pipe indicating a hard interaction. The number of events per second accepted is now

� 100; 000. After L� , L1 requires a variety of thresholds on the events such as the ET of a calorimeter

tower, calorimeter imbalance in ET or missing ET (E/T ), or muon ET . These thresholds are used

together to look for events with a particular physics interest in mind. This leaves the event rate down

to � 100 Hz. Finally, L2 uses software to do a fast event reconstruction to identify candidate physics

objects such as jets, photons, and electrons. Threshold and �ducial requirements are placed on these

objects to decide on keeping an event.

Various physics working groups make many di�erent L1 and L2 triggers depending on the kinds of

events that are of interest to them. Many triggers run simultaneously (trigger \packages") as part of

the DAQ to �nd events of interest for all of the physics groups.

Luminosity

The instantaneous luminosity is the number of pp crossings per unit area per unit time. This

quantity is purely a function of the quality of the Tevatron beam, which runs through the middle of the

D� experiment. Two major properties result in high luminosity: beam diameter and particle intensity.

The beam diameter is an e�ective diameter of the intersection of the proton and anti-proton beams

near the interaction region of the detector. Since p's are di�cult to produce, one of the limitations to

luminosity is the number of p's in the beam.

The integrated luminosity is the number of crossings per unit area over a given running period.

Since this is an inverse area, it is convieniently expressed in units of inverse-picobarns (pb�1). Hence,

the number of events expected from a given physics process having a cross-section � is

N = L � �; (4.4)

where L is the integrated luminosity and is the principal normalization factor used in an analysis. Since

not all triggers are on at the same time, di�erent triggers have di�erent luminosity \exposure." This

is accounted for by recording the triggers and instantaneous luminosity in e�ect in each data-run, and

keeping a database of that information.
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5 OVERVIEW OF THE SEARCH

This analysis looks for high-energy physics events that are predicted by the theory of extended

technicolor. These predicted events are in the bb channel. Unfortunately this signal is not unique. The

standard model predicts bb via the leading order diagrams shown in Figure 5.1, where the outgoing

quark or gluon fragment to produce additional (heavy) jets. In the left-hand diagram, the b-quark is

produced by gluon splitting, and in the right-hand diagram by QCD bremsstrahlung, and sea-quark

content of b-quarks in the proton or anti-proton.

In addition, the cross-section for three or more jets is very high, and there are many cases when a

jet \fakes" a photon. For example, jets copiously produce �0's, which decay via �0 ! . The �0 is

very short-lived, leaves no charged track in the detector, and if it is high energy, it may be impossible to

tell the two photons apart. This can register rather easily as a single high-energy photon. To counter

jet backgrounds, standard D� -ID cuts are applied [17, 19]. Jets still fake photons, but the rate is

much lower with the additional -ID cuts. A detailed description of the background calculation is in

Chapter 7.

An essential task to any analysis is to maximally reduce the number of background events while

keeping signal events. For example, an excess of 20 events above a background of 1000 is considered

negligible, since the Poisson distribution on 1000 events may easily uctuate between 900 and 1100

(1000�p1000). One criterion that may be used is the value of S=pB, where S is the expected number

of signal events, and B is the expected background. Hence, in this case S=
p
B = 0:2. If the selection

of the data is \smarter" { i.e., it is tuned to the di�erences between signal and background{then we

can reduce those background events while maintaining a high signal acceptance, and the new numbers

might be 15 signal and 3 backround, yielding S=
p
B = 8:7! Now, we are well on the way to the discovery

of a new phenomenon. If there is an excess of data events, then the number of standard deviations is

computed. Several standard deviations would indicate the potential for a discovery. If this is not the

case, then we calculate an upper limit on the cross-section of the predicted process. In order to yield the

most powerful search along with the lowest possible cross-section limits, we use several observables as
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Figure 5.1 Leading Order Feynman diagrams for single direct photon produc-

tion: one of the ways that bb gets produced. Initial state quarks

and gluons are on the left side of each diagram; �nal state particles

are on the right side.

inputs to a neural network program, called jetnet [26] to quantify the di�erence between technicolor

and background events.

Physics Variables

Technicolor events and background events must be distinguished from one another in a quantitative

way. To begin with, the !T and �T are expected to be quite massive and to produce resonance peaks.

In contrast, background events have a more even distribution in mass. Hence, mass variables are used

that correspond to the !T and �T . These are M(; jets) and M(jets) respectively. Approximately

40 other physics variables were considered for technicolor vs. background discrimination properties.

Figures 5.2-5.4 contain plots showing examples of technicolor signal superimposed on background for

each variable, listed and de�ned below in order of importance:

� M(; jets) =
q
(
P;jets

i Ei)2 � (
P;jets

i

�!
P i)2. This quantity corresponds to the mass of the !T .

� M(jets) =
q
(
Pjets

i Ei)2 � (
Pjets

i
�!
P i)2. This is the mass of the �T when evaluated on technicolor

events.



19

� �M(; jets)�M(jets)
�
=M(; jets). The \reduced mass di�erence" peaks very sharply for tech-

nicolor events, but is very broad for background events.

� Dijet opening angle �Rjj =
p
(�j1 � �j2)2 + (�j1 � �j2)2. This is sensitive to the mass of the

technipion, and is more peaked for technicolor events than for background events. Similarly, the

opening angles between all leading objects �Rjeti , �Rjetijetj were considered.

� Dijet opening �-angle �� = j�j1 � �j2j. Again, this is also sensitive to the relatively massive �T .
In addition, the opening angles ��jeti , and ��jetijetj were also considered.

� E
T . Photon transverse energy. The photon emitted from the decay of the !T has a large transverse

energy.

� Ej1
T , Ej2

T . These are the transverse energies of the highest ET jets in the event.

� �j , � . The psudo-rapidity of the jets and photon is similar to the scattering angle and is de�ned

to be � = �ln tan �=2.

� M(; jets)�M(jets). The mass di�erence is also a strong peak for technicolor events.

� Two-body mass combinations, M(; j1), M(; j2), M(; j3), M(j1; j3), M(j2; j3)

� ST =
Pall

i ET . The sum of the transverse energies of all of the jets, the photon, and the muon in

the event.

� HT =
Pjets

ET . The sum of the transverse energies of the jets in the event.

� Ej1
T =HT . The ratio of the leading jet ET to the sum of the jet ET 's.

� E/T . Missing transverse energy of the event.

� Njet. The jet multiplicity is the number of jets produced in the event.

� Aplanarity and Sphericity: These indicate the momentum ow of the event and are event shape

variables. They are computed by diagonalizing the momentum tensorMab =
PNjets

j pjapjb=
PNjets

j p2j

where a; b run over the x; y, and z momentum components and j is the jet index. The eigenvalues

are Q1; Q2; and Q3. Aplanarity is de�ned A = 3
2Q1, and Sphericity is de�ned S = 3

2 (Q1 + Q2).

These variables were inspired by the top quark search in the tt! jets channel.
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Many of the above quantities provide at least some level of discrimination. At the start of the selection

process, the above variables were plotted and qualitatively evaluated for their individual discrimination

properties. As seen in Figures 5.2-5.4, there are several candidates that show promise.

To maximize the discrimination power of many variables simultaneously, we employ neural net-

works. However, there is redundancy between many of the variables listed above, and some yield less

discrimination than others. Hence, a small complementary subset was selected after trying many di�er-

ent variable combinations in a neural network. This following �ve were found to be the most e�ective

combination:

1.
�
M(; jets)�M(jets)

�
=M(; jets)

2. M(jets)

3. E
T

4. �Rjj =
p
(�j1 � �j2)2 + (�j1 � �j2)2

5. ST

Search outline

The remaining chapters describe in detail the search for !T at the D� experiment. Below is a

schematic outline of this search program.

1. Filter Run 1 D� data to extract bb candidate events. This includes kinematic cuts, photon

identi�cation, and b-jet identi�cation by identifying a � close to the jet in the decay b! X���.

2. Derive the \tag-rate" function to be used to compute the background. This function re-weights

non b-tagged events to reproduce the spectra of b-tagged events.

3. Generate technicolor events and cross-sections using pythia v6.126 and geant detector sim-

ulation for the events. Use standard reconstruction software, d�reco, to put the events into a

usable form. Apply the event selection criteria to these Monte Carlo events. Because the masses

of the !T and the �T are unknown, the search is performed by varying the two masses over a

2-dimensional grid at roughly 20 GeV interval. Each combination of masses is a separate search.

This analysis evaluates thirty-two such \mass points," ranging over 140 < M(!T ) < 300 GeV and

40 < M(�T ) < 140 GeV.
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4. Compute corrections to the technicolor acceptance due to aspects of pp interactions not sim-

ulated by geant.

5. Create training samples used to train neural networks. These samples are from data and signal

Monte Carlo events (generated by pythia) using the selection cuts for this analysis, but without

the b-tag requirement. Since the neural network inputs (physics variables) depend on the masses

given to the technicolor Monte Carlo, a di�erent neural network is trained on each mass point.

6. Train neural networks for each of the 32 combinations of !T , and �0T mass generated, where

the technicolor events are \signal" and non b-tagged events are \background."

7. Apply each neural network to these events, and integrate the DNN distribution for a given

NN to get the number of technicolor, background, and data events as a function of the \DNN

cut."

8. Select the NN discriminant cut value for each mass point to maximize potential signal and

minimize background events.

9. Evaluate the signi�cance of any excesses in the data above the background prediction. If the

data are free of non-standard model events, then the background prediction is expected to be the

same as the number of b-tagged events.

10. Compute 95% con�dence level upper limits on the ��BR at each of the 32 combinations of

M(!T ) and M(�T ) mass.
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Figure 5.2 An example techncolor signal sample superimposed on background

distributions. These show the variables considered for discrimina-

tion between technicolor and background before arriving on the

�nal list of �ve.
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Figure 5.3 Discriminating physics variables continued.
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Figure 5.4 Discriminating physics variables continued.



25

6 DATA SELECTION

The expected technicolor signature is bb, so the objects of importance in this analysis are the

photon, jet, and muon; the muon indictates the semi-leptonic decay of a b-jet. The two major categories

of data selection are online and o�ine. The online data selection is handled by the data aquisition

system (DAQ), which makes decisions on which pp events to write to tape. So, once a decision is made

as to what kinds of events are wanted for the analysis, bb, we �nd the event \trigger" that gives the

closest speci�cation. In this context, trigger really refers to the data sample that was stored on tape or

disk because the corresponding trigger \�red."

The level 2 (L2) trigger that we require is a superset of bb, and has caused the D� DAQ to store

jj events. This trigger is called gis dijet (or ele high for Run 1a), and it triggers on events having

the following properties: one or more isolated objects in the EM calorimeter (our photon candidate)

with ET > 15 GeV, and � < 2:0, two or more jets with ET > 15, and � < 2:0. Additionally, the total

transverse energy scalar sum is required to be > 70 GeV. This trigger was exposed to a beam luminosity

of 105�6 pb�1 [18]. A trigger with the additional requirement of a muon in the event (needed for b-jet

identi�cation) was not available. Hence, we begin this search with a sample of jj events.

With the trigger sample established, more detailed event selection is done. This is made possible

by the DAQ's storage (once the event triggered) of enough information about the jets, photons, etc., in

each event to be able to make \quality" decisions about those objects later on. Using this information,

the o�ine cuts are now applied to each event to increase the purity of the sample. The following is a

brief summary of all of the selection requirements used in this analysis:

� The D� data aquisition system has triggered on the events of interest, and has recorded events

with a photon candidate and two or more jets. These are the gis dijet(Run 1a), ele high(Run

1b) triggers.

� \Clean" requirements. This is the �rst o�ine cut, and, as the name suggests, it ensures that the

detector and accelerator environment are operating normally. For instance, events with excessive

Main Ring activity in the calorimeter is excluded.
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� Exactly one photon with E
T > 25 GeV is required. This is de�ned to be a narrow, isolated object

restricted to the EM calorimeter, and with no track between this EM object and the event vertex.

� Each event must contain two or more jets, where Ej1;j2
T > 20 GeV and j�j1;j2j < 2:5. Jets are

contained largely in the hadronic section of the calorimeter.

� Events with electron candidates are excluded. These rather tight topological requirements reduce

bremmstrahlung backgrounds.

� Missing transverse energy E/T < 25 GeV, since no large E/T is expected in the technicolor signal.

� One jet is identi�ed as coming from a b-quark by using the decay b ! X���. This \soft" muon

is required to be inside the jet-cone.

� A neural network cut is applied to the events that pass all of the above requirements. The use of

neural networks in this analysis is described in Chapters 9 10.

The �rst o�ine cut applied is called the \clean" cut. The \clean" requirements ensure that no Main

Ring activity, that \hot" cells (spurious, isolated energy) in the calorimeter have ET < 10 GeV, and

that good versions of the reconstruction program, d�reco, were used on the raw data sample (versions

12.00 to 12.12 were found to have bugs). The \d�reco cut" is 99.92 % e�cient, while all of the clean

cuts together are 90:74� 0:03% e�cient. The error is small due to the large number of events, � 106,

used to take the ratio.

Table 6.1 shows the results of these cuts on the data and on a set of technicolor Monte Carlo events.

In Chapter 8 we show the details on the computation of the technicolor monte carlo acceptance. The

following sections describe each of the data selection requirements in detail.

Photon Identi�cation

The o�ine -ID requirements are set so that the photons have high reconstruction e�ciency and

reasonable purity, where purity is the probability of the EM object to be a true photon and not a pion

(jet) or an electron. The photon shower in the EM calorimeter is narrow and should have most of its

energy deposited in the electromagnetic part of the calorimenter. This is in contrast to jets, which have

the majority of their energy deposited further out, into the hadronic calorimeter. Also, no tracks or

hits in the tracking system are expected from photons, since they are neutral particles. Hence:

� E
T > 25 GeV. To get higher trigger e�ciency, this should be several GeV higher than the trigger

threshold.
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Table 6.1 Shown are the results from the event selection cuts, excluding the NN

cut. A typical Signal MC is shown for comparison. The acceptance

correction e�ciencies are included, and are described in Chapter 8.

Cuts Expected Signal MC Nevents

M(!T ) = 180;M(�T ) = 100

clean

ele high (Run Ia)

gis dijet (Run Ib) 395 956733

N = 1, Njet � 2

Nelec = 0 269 427453

Ej
T > 20GeV

j�j j � 2:5 196 157259

E
T > 25

j� j � 2:5 & ICD cut 163 81717

Iso < 0:1

�2 < 100

EM fraction > 0:95 149 44694

hitsinfo 134 33057

E/T < 25GeV 124 32067

�-tag 11.3 218

� Inter-cryostat detector (ICD) region cut: j�detj < 1:1; j�detj > 1:5, where �det is the detector �,

not the physics (reconstruced) � of the particle. The detector-� indicates the actual struck region

in the detector. Physics � is the � of the outgoing particle relative to the event vertex. Hence,

physics and detector-� disagree when the event vertex is other than z = 0.

� j� j < 2:5. This is the limit of the tracking system, so outside of this, it is harder to tell the

di�erence between electrons and photons.

� EM fraction > 0:95. This is the fraction of the energy of the photon candidate carried by the EM

calorimeter. A high fraction indicates a high probability of an electron or photon.

� H-matrix �2 < 100. Computed by RECO for each candidate from calorimeter shower shape

variables. The lower the number, the more likely that the particle is a true EM object.

� fiso < 0:1, where

fiso =
E(r < 0:4)�E(r < 0:2)

E(r < 0:2)
; (6.1)
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where r is the radius in � � � space from the cluster center in the calorimeter, and E is the

energy deposited within the indicated radius. The smaller the value of fiso, the narrower and

more photon-like or electron-like is the shower.

� No tracks in a narrow conical volume between the EM cluster in the calorimeter and the main

vertex of the event. These are the hitsinfo cuts, which are explained in more detail below.

When the shower centroid of the photon candidate is traced back to the event vertex, the occupancy

in the tracking system is required to be relatively low. This is speci�ed by the the so-called hitsinfo

cuts. Once the centroid of the photon candidate is determined, a narrow \road volume" in �� � space

is used to evaluate tracks in between the EM cluster in the calorimeter and the primary event vertex

[19]. Depending on the detector subsystem, the road volume is de�ned in Table 6.2.

Table 6.2 De�nition of the road volume for a photon candidate [19]. This

volume is inside the tracking chamber between the EM calorimeter

signature and event vertex.

hitsinfo road volume

Detector ��(rad) �� (rad)

VTX 0.005 0.012

CDC 0.05 0.0075

FDC 0.005 0.015

Table 6.3 describes the actual values used to specify the hitsinfo cuts. The cryptic-looking variables

refer either to the fraction of wires hit in the vertex detector (VTX) or in the central or forward drift

chambers (CDC or FDC), or to the number of hits in various regions of the central detector (CD). There

is typically a lot of stray charge from sources other than the object of interest (our photon candidate),

but by adding the hitsinfo requirement, the probability of the EM object being a photon is signi�cantly

increased, since no tracks are expected from photons. The following quantities are typically used to

specify the hitsinfo cuts within the \road volume" between the EM cluster and the vertex:

� RHVTXW: fraction of wires hit in the VTX

� NHVTX3D: number of VTX hits in the road volume

� RCCDCW (RHFDCW): fraction of CDC (FDC) wires hit

� NHCDCXY (NHFDCXY): number of CDC (FDC) X-Y hits
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� NHCDC3D: number of CDC 3-dimensional road volume hits

� NHCDCZS: number of CDC z-segment hits

Table 6.3 De�nition of the standard hitsinfo cuts [17, 19]. Candidates pass-

ing this cut have a higher probability of being a photon. This prob-

ability is sometimes referred to as photon purity.

hitsinfo requirements

Vertex Chamber

RHVTXW < 0:3

NHVTX3D � 8

Central Drift Chamber Forward Drift Chamber

RHCDCW < 0:3 RHFDCW < 0:7

NHCDCXY � 20 NHFDCXY � 36

NHCDC3D � 1

NHCDCZS = 0

b-jet Identi�cation

One of the ways in which b-quarks decay is via b! X���. Because D� is designed to detect muons,

this semi-leptonic decay is used to detect the presence of a b-quark jet. The \tagging" muon is required

to be at a small angle with respect to the jet, i.e. inside the jet cone.

Therefore, a single muon tag is required to signi�cantly increase the signal-to-background ratio in

this search. A muon emerges from the decaying b-quark for just under 20% of bb events, and the basic

muon tag requirement ensures that the muon has P�
T > 4 GeV and �R < 0:5 of the jet centroid,

where �R =
p
��2 + ��2. As seen in Table 6.1, slightly more than 10% of Monte Carlo signal events

pass the �-tag requirement alone. However, only 0.4% of data events remain. This large di�erence in

acceptance makes the single b-tag a very e�ective signal vs. background discriminator. Because of low

total acceptance of the technicolor signal to a double b-tag (<� 1%), only a single muon is required for

the event.

The requirement of a �-tag thus divides data into two samples: the \signal" sample that passes the

�-tag requirement along with the other selection cuts, and the untagged sample. The latter is used to

estimate the background by applying a tag-rate function to each jet passing a threshold. More detail

on the tag-rate function is given in section 7.
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Table 6.4 describes the detector variables used to identify a b-jet using a muon. First, the following

terms need some explanation:

� QUAD: The muon system has 12 quadrants. Only the �rst four correspond to the \central iron"

(or CF) detector. Due to the low e�ciency of the \end iron" detectors (or EF), we only use muons

entering the CF.

� IFW4: Also called muon track \badness." IFW4 results from a �t of all of the tracking informa-

tion. The higher the number, the more aws in the track.

� MTC, Muon Tracks in the Calorimeter: Muons leave minimum-ionizing tracks in the calorimeter

that can be matched with the rest of the tracking system. The MTC software to do this comparison

was not available until Run 1b, hence the reconstruction (d�reco) version requirement shown in

the table. hfract is the number of \hits" by the muon candidate divided by the possible number

of hits that it can make in the hadronic portion of the calorimeter. efract is the energy in a 3�3
region of cells around the muon track candidate. So, if hfract is not 1.0 (100% of the possible

hits the muon could make in the hadronic system), then the additional requirement is made on

the last EM layer (see the table).

Table 6.4 Requirements for a �-tag indicating a b-quark jet in terms of detector

variables. MTC refers to muon tracks in the calorimeter.

Soft muon b-Tagging Reqirements [20, 21]

Muons in CF only (QUAD � 4)

Track Quality IFW4 � 1

MTC cuts if RECO version � 12.13 :

HFRACT � 0.75

EFRACT H(1) > 0 if HFRACT 6= 1

�R < 0:5 between muon and jet axis

P�
T > 4 GeV

Because of radiation damage in the muon chambers from Main Ring activity, there is a run-number

dependence to the e�ciency of the D� muon chambers in the Run-1 detector. The following run-ranges

are used in this analysis [22, 23], and in particular, the measurement of the tag-rate function (see

Chapter 7):

� Run number < 70 K: Run 1a.
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� Run number from 70 K to 84 K: Run 1b, before an increase in voltage to the muon chamber wires,

and the recharge of muon chamber gas near the time of run number 84 K.

� Run number from 84 K to 89 K: The time after the above change and before zapping the muon

chamber wires for cleaning.

� Run number > 89 K: Run 1b, post-zap.

Missing Transverse Energy (E/
T
)

In bb events, no large E/T is expected in the technicolor signal. The only E/T in the target events

comes from the low energy neutrino of the b-quark decay. The background calculation does not currently

take this e�ect into account, hence the E/T comparison between �-tagged data and background does not

hold for E/T > 30 GeV.
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7 BACKGROUND CALCULATION

As previously stated, this analysis looks for excesses in the bb channel. Since this is a counting

experiment, any excesses must be evaluated in reference to the null hypothesis, or background, i.e.

where technicolor would not exist or is not signi�cant.

After the basic selection cuts, there is still not enough discrimination in the analysis to �nd such

a low{rate signal � � BR � 1� 10pb. To increase discriminating power, a neural network cut will be

applied as a function of technicolor mass. A prediction is now needed of the number of data passing a

given neural network cut, after passing the initial event selection. This prediction is the purpose of this

background calculation.

The best and simplest background calculations are derived from data. This is partly because the

physics and detector sources of background are combined, but also because the events include (by

de�nition) the correct fragmentation and bremsstrahlung e�ects in a given event. The background

calculation in this analysis is indeed data-based, with a carefully-chosen weighting scheme.

The background for this analysis results from several identifying sources: three (or more) jet events

where a jet fakes a photon (mostly via �0; � ! ), single direct-photon production (QCD photons),

ejj production with an electron losing track information, and hadronic modes of Z and W. The W

is mentioned, since only one b-tag is required. Many events of these types, along with the hypothesized

signal, comprise the bb sample identi�ed in Chapter 6.

Consider the sample of events that fail the �-tag requirements, but pass the other jj requirements

in this analysis. It is assumed that these jj events contain the same physics processes (except for soft

�'s produced by heavy quarks) and e; j !  fake-rates that exist in bb. Therefore, this is the sample

that is used to estimate the background. For every �-tagged event, there are approximately 150 events

that pass all cuts except for the �-tag. Therefore, plenty of data exists on which to base a background

estimate.

The next problem is to �nd a way to weight these 32,000 events, so that they model physics dis-

tributions for the � 220 b-tagged events. The probability of a b-tag increases slightly with jet ET .
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In addition, the D� � detector e�ciency is a function of j�j, where low-j�j (central) regions are more
e�cient than the outer regions. Therefore, a constant weighting for every jet would not be appropriate

in modeling the bb sample. In addition, there is an overall dependence of the B-tagging on the run

number due to the changes in the e�ciency of the central muon system with time. These facts are

used to create a variable per-jet weighting called a tag-rate function. This function is a measurement

of the number of �-tagged jets per untagged jet in the same ranges of ET , � and run number. In turn,

this tag-rate function is used to compute the background estimate. A tag-rate background calculation

was also similarly used in the search for the top quark [23] and the fourth generation b-quark (b0)

[17]. Figures 7.1 and 7.2 show the resulting tag-rate function used in this analysis, and this function

is simply the values in the plots shown. The binning was selected to optimize the statistics going into

each ratio (of tagged to untagged events), and no �t or smoothing is used. The tag-rate function for

jets is expressed as:

R(Ej
T ; �

j ; r) = N(r)� f(ET )� �(�; r) (7.1)

where R is the tag-rate for jets, r is the D� run number, and the independent functions f and � are

the ratios of tagged to untagged events. The normalizations, N(r), are the following:

� N(r < 70 K) = 4:966

� N(70k � r < 84 K) = 4:639

� N(84k � r < 89 K) = 4:590

� N(r � 89 K) = 4:482

Each part of the tag-rate function, N(r), f(ET ), and �(�; r) is computed separately. First, �(�; r)

is measured independently of Ejet
T . Second, f(ET ) is measured independently of �jet and run number,

r, then f(ET ) normalized to 1.0. For the next iteration, f(ET )� �(�; r) is evaluated on the jets in the

untagged sample, totaled, and compared to the number of �-tagged events in each run-number set. The

normalizations are computed as a function of r so that the tag-rate, when evaluated over the untagged

events, gives back the total number of tagged events passing the same cuts, and reproduces the physics

distributions of the tagged events. The errors in f and � are statistical and a function of the same

variables, ET , �, and r. The normalizations N(r) are considered to be exact, since they are from ratios

containing the same jets in the numerator and denominator as the �(�; r) function, so the statistical

errors are already included.
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To reduce the statistical error in the tag-rate function, the data sample used to derive the tag-rate

is slightly more inclusive (372 events) than the one for the counting analysis (which are speci�ed in

Chapter 6). The following was required of the events used to derive the tag-rate:

� Trigger and Clean requirements for each event

� Event topology : Njet � 2; N = 1; Nelec = 0

� All -ID cuts, ICD cut, and E
T > 25 GeV, j� j < 2:5

� E/T < 25 GeV.

� Each jet used to compute the tag-rate function has Ejet
T > 15 GeV; j�jetj < 2:0. All other jets are

assigned a tag-rate of zero.

Now, the number of background events passing some NN cut may be computed. These events will

be a sub-sample of the � 220 events originally selected by the counting analysis cuts of Chapter 6. Each

untagged event passing the same cuts as the tagged sub-sample is weighted by applying the sum of the

tag-rates from every jet in the event above the �-tagging threshold (see section 6) of Ejet
T > 15 GeV

and j�jetj < 2:0. A typical tag-weight for an event is 5� 10�3 and is given by

Wevent =

NET>15;j�j<2:0X
jet

R(Ej
T ; �; r) (7.2)

where W is the tag-rate given to the event. For histograms in a given observable, such as jet-mass,

M(jj), the proper value of the background and error in the background must be computed. This is

done �rst by �lling 3 histograms:

� One with W+, the tag-rate for each event, with the statistical error added

� Another with W�, the tag-rate for each event, with the statistical error subtracted

� A third with the squares of the tag-weights W 2.

The nominal value of the background histogram is computed by taking the average of the W+ and W�

histograms. The error in each bin in the resulting histogram is computed by

�W =

sX
W 2 +

�P
W+ �PW�

2

�2
(7.3)
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where the sums are taken over the events in a given bin, and the W 2 term is the statisical error in the

sub-sample on which the tag-rate is being evaluated.

Assume for the moment the existence of technicolor-induced events in the data. Ninety percent

of the �T 's produced decay to b-quarks. Combining the probability of a b-quark producing a soft �

with the D� �-detector e�ciency, less than 10% of the b-quark events will actually become �-tagged.

After all cuts, including neural network and �-tagging, this would imply an excess above background

of � 10 events (for some of the \high" � � BR cases) within a narrow M(!T );M(�T ) mass range.

Therefore, the other � 90 technicolor events that have passed all cuts except �-tagging will end up in

the background sample. However, the average value of the tag-rate is about 7� 10�3, so these events

would produce a negligible e�ect on the background calculation. (See Table 11.2 to see typical numbers

of events). Similarly, the technicolor events in the tagged sample will have produced a small upward bias

in the normalization, N(r), of the tag-rate function. Therefore, the tag-rate method for a background

calculation is only valid if the expected signal above standard model is small.

Figures 7.3 { 7.5 show the comparison between data and background for several physics variables.

As seen by the �2 comparisons shown on the plots for each variable, the bin-to-bin agreement between

data and background is good, so the tag-rate method seems to be a reliable method to use for the

background calculation. Also shown is the un-tagged sample with no tag-rate applied so that the

action of the tag-rate function may be seen. For example, the graph of Ejet1
T in Figure 7.3 shows the

distribution of the highest ET jet (the \leading" jet) in the event. The dotted line is a plot of the � 32K

untagged events, and simply renormalized to the number of tagged events (solid line). The dotted and

solid histograms do not correspond very well, but when the tag-rate function is applied to the untagged

events the correspondence is much improved. The �2 per degree of freedom is shown in each case to

compare the predicted number of tagged events with the tagged distributions. The tag-rate function

not only gives a normalization, but also contains shape information.
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Figure 7.1 The top plot shows the jet ET tag-rate, f(ET ), and has been nor-

malized. It is assumed to be independent of � and run-number, and

is one of the three components of the tag-rate function. The other

two components are the normalization as a function of run-number,

N(r), and the tagged-jet � dependence, �(�; r) (shown in the next

�gure). The bottom plot shows the run-range, r, dependence to the

tag-rate function, and is a demonstration of how the e�ciency of

the D� muon detector changed with time.
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Figure 7.2 These show the other major component, �(�; r), of the tag-rate

function. The vertical axis is the rate of the number of �-tagged jets

over the number of untagged jets. The muon detection e�ciency

changed in di�erent �-regions of the detector at di�erent times, so

the run number dependence is necessary in the function, �(�; r),

but not in f(ET ).
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Figure 7.3 Plots showing comparison of Tag-Rate shapes to tagged data.

The observables shown here and in the plots that follow show the

bin-to-bin correspondence between the background calculation and

�-tagged data for several physics variables.
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Figure 7.4 Plots showing comparison of Tag-Rate shapes to tagged data. The

observables shown here and in the plots that follow show the

bin-to-bin correspondence between the background calculation and

�-tagged data for several physics variables.
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Figure 7.5 These plots also compare background shapes to tagged data. The

�ve observables shown here are used in training the neural networks.
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8 TECHNICOLOR MONTE CARLO AND ACCEPTANCE

CORRECTIONS

In this search experiment, we compute the number of technicolor events expected in the data after

the analysis cuts are made as a function of M(!T ) and M(�T ). The Monte Carlo program, pythia

v6.126, generates the technicolor events, and the detector response to those events is evaluated with

the D� Run-I version of geant. In addition, pythia calculates the technicolor LO di�erential cross-

section, d�=dQ2, based on technicolor theory, on the requirements of momentum conservation, and on

Lorentz invariance. Calculating the number of technicolor events that pass the selection cuts is now

possible. Typically, � 10; 000 Monte Carlo events are used in the acceptance calculation. The number

of expected technicolor events (for a given technicolor hypothesis), takes the form:

N = � �BR(!T =�0T ! �T =�
0
T ! bb) � L � � � Nacc

Ngen
(8.1)

where � � BR is the pythia-calculated cross-section (including the speci�c decay \branching ratio"

to bb), L is the integrated luminosity taken at D� during Run I (1992-1996), Nacc is the number

of technicolor events passing selection cuts, and Ngen is the number of technicolor events generated

(Nacc < Ngen). Finally, the e�ciency, �, is the necessary adjustment to Nacc needed to account for

innacuracies in the detector simulation, and for conditions not simulated, such as main-ring \veto." For

an ideal environment, � = 1: Figures 8.1 { 8.3 show the comparison between three selected technicolor

mass points, and backgrounds.

Table 8.2 shows the 32 sets of technicolor MC that have been generated. This table includes the

� � BR, the acceptance � acceptance corrections, the relative e�ciencies of NN cuts of signal vs.

background, and the number of technicolor events generated. There are a number of parameters of the

theory other than masses which are also considered, but they are kept constant in this analysis, and

are the nominal values suggested in [5], and also later in [6] for the more updated model, which now

includes the �0T and �0T decay channels. This low-scale technicolor model corresponds to one that is in
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observational range of the Tevatron, and it encompases the standard model and currently predicts the

observed phenomenology of standard model processes. The parameters used within pythia to generate

technicolor events and compute the � � BR as a function of M(�T );M(!T ) are listed in Appendix A.

The printout in Table 8.1 is a partial listing of typical technicolor event generated by pythia.

Each row in the table corresponds to a particle generated by the pp collision (indicated in the �rst

two rows). The column headings indicate the name of the particle produced, the standard Monte Carlo

name of the particle (KS & KF numbers), the line number the particle decayed from (\orig"), the four

components of momentum and energy, and the mass of each particle.

Table 8.1 An example !T ! �T event generated by pythia. The !T does

not show up since it is a virtual particle in the propogator, and

pythia only stores real particles for the event.

Event listing (summary)

I particle/jet KS KF orig p_x p_y p_z E m

1 !p+! 21 2212 0 0.000 0.000 900.000 900.000 0.938

2 !pbar-! 21 -2212 0 0.000 0.000 -900.000 900.000 0.938

==============================================================================

3 !u! 21 2 1 0.086 0.130 92.765 92.766 0.000

4 !ubar! 21 -2 2 0.154 -0.165 -322.869 322.869 0.000

5 !u! 21 2 3 10.298 -3.412 34.621 36.281 0.000

6 !ubar! 21 -2 4 0.151 -0.161 -315.906 315.906 0.000

7 !gamma! 21 22 0 -62.532 -2.807 -32.448 70.506 0.000

8 !pi_tech0! 21 51 0 72.982 -0.767 -248.837 281.681 109.989

9 !b! 21 5 8 60.425 -27.050 -242.541 251.463 5.000

10 !bbar! 21 -5 8 12.557 26.283 -6.296 30.218 5.000

==============================================================================

The pythia-generated events are simply lists of particles and their momenta. The detector simula-

tion program library, geant [15], is combined with the geometry of the D� experiment [16] to compute

the response of the detector to the pythia-generated events. geant turns the simulated particles into

\hits" in the various components of the detector and simulates the e�ect that an event (such as the

decay of a !T ) would have on the elements of the D� detector. The same software, d�reco, which is

used to reconstruct the data taken from Tevatron pp collisions, recontructs the geant'ed MC events.



43

Acceptance Corrections

Some e�ects, however, are missing from the detector simulation: Main Ring activity in the 80 < � <

120 \�-hole" of the calorimeter; the \underlying event" that partially populates the central tracking

and calorimeter systems; the muon detector's time-dependent ine�ciency due to radiation damage; and

the intrinsic ine�ciency in the muon system not accounted for by geant.

Table 6.1 shows the cuts used in this analysis (not including neural net) applied to an example signal

Monte Carlo along with data. The numbers shown include the cuts as well as the di�erent corrections

applied to the acceptance, where

� = �� � �hits � �clean: (8.2)

The �'s are the corrections applied for the �-ID, -ID (hitsinfo correction), and clean requirements

respectively. This total correction is applied to Equation 8.1.

b-tagging Correction

The number of signal Monte Carlo events is corrected for the muon detection e�ciency, usually

referred to as the \eye-scan" e�ciency [24]. This is calculated by looking at � 1000 MC and data event

displays with muons, and computing a factor to correct the overestimate of the acceptance of muons by

geant. Muons in the Central Iron region (CF) are given a correction of 94:1� 1:8% and 91:1� 1:9%

in the End Iron (EF).

Due to the main-ring passing through the D� calorimeter, there is a � region in which the muon

detection e�ciency is lower. This is called the \�-hole." The �-hole (80� < �� < 120�) muons are given

a correction of 95� 5% for Run 1a, 90� 5% for Run 1b pre-zap, and no correction for Run 1b post-zap

[21]. Since the MC is corrected instead of the data, we take a weighted average of the run-number

dependent corrections: the fraction of events in the jj trigger sample from Runs 1a, 1b pre-zap, and

1b post-zap, respectively, are used to compute a weighted-average �-hole correction of 93:9� 3:4% for

found muons within the �-hole.

hitsinfo (no hits in road) Correction

The \underlying event" is a feature of most pp interactions, and results from the breakup of the p

and the p after one quark from each is involved in the hard (high-ET ) interaction. This produces a

low-energy (� 1 GeV) shower of particles, which register in the tracking system and in the calorimeter.
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The technicolor events of this analysis were generated without an underlying event added, so the

extra occupancy of the central tracking system due to charged particles from the underlying event is

not simulated. Hence, the number of events passing the no hits in road, or hitsinfo, requirement

for -ID is overestimated. The technique of using �{rotated Z ! ee events is used here to derive

the correction. The assumptions are that the physics of any given event is �{independent, and that

high{energy electrons and photons have the same signature in the calorimeter system. So, when the

Z ! ee events are rotated 90� away from their tracks, the {ID software can no longer tell the di�erence

between the electron produced by the Z and a real photon, since photons are neutral and leave no track

in the drift chambers. The fraction of these �-rotated Z ! e+e� events passing the hitsinfo cut is

90� 4% [17]. This is the rate-correction applied to the MC events for this cut.

clean Correction

As discussed in Section 6, main ring activity in the calorimeter, hot-cells in the calorimeter and

RECO version cuts are not accounted for in the detector simulation, so a correction is applied to the

acceptance. The applied correction is 90:74� 0:03%, and was calculated by taking the ratio of events

in the data passing the initial trigger requirement (i.e. the ele high and gis dijet trigger sample),

with and without the clean requirement. To verify the independence of the clean correction to event

selection cuts, the same ratio was taken after the remaining data selection cuts (but not the NN cut),

and the result was consistent (88� 2%).
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Figure 8.1 Here are �ve observables which show how technicolor would present

itself in the data for 3 di�erent mass values compared with back-

ground distributions, with the background calculated using the

tag-rate method described in Chapter 7. These �ve variables have

excellent signal-to-background discrimination properties, and are

used in training the 32 neural networks to search for technicolor

events in the data.
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Figure 8.2 These are some of the variables that were considered for NN train-

ing, but not currently used. They either have relatively little dis-

crimination power or are redundant in conjunction with the �ve

NN variables currently in use.
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Figure 8.3 The physics-� variables of the  and the two leading jets. The

Monte Carlo events are shown to correspond well to the background

events derived from D� data. It can also be seen that the � distri-

bution alone is not an e�ective discriminator between technicolor

MC and background.
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Table 8.2 Technicolor Monte Carlo (pythia v6.126 with geant, showerlib).

Shown are all of the mass combinations generated for this analysis.

The quantity A�� is the fraction of events passing selection cuts with
the correction applied. The last column is the relative fraction of

technicolor and background events passing a NN cut of DNN > 0:9.

Masses (GeV) Events � �BR Initial �relDNN>0:9

M(!T ) M(�T ) Generated (pb) Selection A� � MC Bkg

140 40 13280 9.53 0.008 0.431 0.024

140 60 10000 9.13 0.009 0.310 0.010

140 80 10000 15.62 0.013 0.250 0.016

140 100 14000 8.59 0.016 0.299 0.020

160 40 14500 5.86 0.011 0.745 0.024

160 60 9985 5.81 0.013 0.507 0.030

160 80 13000 11.89 0.016 0.297 0.019

160 100 13500 9.42 0.022 0.410 0.037

180 40 14000 3.92 0.016 0.796 0.020

180 60 14000 3.84 0.017 0.625 0.027

180 80 9507 4.19 0.021 0.573 0.039

180 100 8849 7.57 0.029 0.365 0.024

180 120 9507 5.79 0.028 0.448 0.045

200 20 14500 2.75 0.006 0.719 0.058

200 40 9016 2.71 0.015 0.749 0.027

200 60 10000 2.62 0.020 0.676 0.037

200 80 12000 2.71 0.023 0.527 0.033

200 100 14000 4.05 0.029 0.614 0.047

200 120 10000 4.88 0.032 0.484 0.039

210 90 10000 2.35 0.028 0.547 0.047

210 110 9506 3.41 0.036 0.459 0.041

220 60 14000 1.90 0.023 0.671 0.025

220 80 4856 1.87 0.032 0.685 0.073

220 100 14000 2.10 0.030 0.645 0.042

220 120 14000 2.83 0.033 0.497 0.034

260 60 9506 1.06 0.029 0.871 0.042

260 100 10000 1.02 0.035 0.756 0.052

280 40 3888 0.85 0.020 0.942 0.038

280 120 4909 0.81 0.039 0.694 0.053

300 40 10000 0.67 0.013 0.972 0.035

300 80 10000 0.61 0.030 0.947 0.041

300 140 9008 0.67 0.040 0.802 0.041
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9 NEURAL NETWORK IMPLEMENTATION

After the bb events are selected, there are still a relatively small number of technicolor signal events

and a large number of background events. We now pursue a multivariate technique to better separate

potential technicolor events from backgrounds. In this analysis, neural networks are used to accomplish

this separation. The purpose of the neural networks is to categorize events in the data set into one of

two types: technicolor candidates and background events. As a method of �nding the optimal region

of physics variable-space, neural networks (NN) are able to yield signi�cantly better signal acceptance

and at the same time lower backgrounds compared to other methods [25].

In general, a neural network must be trained on a sample of signal (in this case, technicolor MC)

and on a sample of background events. During training, the neural network output value, called the

discriminant, or DNN , is constrained to yield a value near 0 for the background events and 1 for the

signal events. In other words, the NN is trained to recognize signal and background events based on a

selected set of events (the training sample) and the physics variables associated with each event.

The NN program jetnet [26] is a \feed-forward" NN program with 3 layers of decision points or

\nodes": the input layer, the hidden layer, and the output layer. The structure is shown in Figure 9.1,

and was inspired by the way in which the neurons of the brain function and \talk" to each other [27].

Feed-forward neural networks have information ow in one direction from the input layer to the hidden

layer, then �nally to the output layer. In other words, no feed-back mechanism is included in these

neural networks. The input layer nodes correspond to the input physics variables selected for their

signal-to-background discrimination properties. The hidden layer provides additional nodes to process

the information contained in the training samples. The user selects the number of hidden nodes to

optimize the discriminating characteristics of the neural network. In general, the last layer { the output

layer { can have many nodes, but for our purposes, only one node is used, and it gives the output value

of the neural network, DNN , which varies between 0.0 and 1.0.
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Figure 9.1 Diagram showing the node structure of a feed forward neural net-

work with multiple inputs, one hidden layer, and a single output

node, which is the neural network discriminant, DNN . The input

nodes correspond to the set of input physics variables selected to

best discriminate between signal and background events.

The Input Layer: Physics Variables

The number and type of input variables { the input nodes{ determine the success or failure of the

NN. These must be a set of variables that already discriminate signal from background moderately well

without being redundant. Figures 8.1 and 8.2 exhibit some possible input variables. Note the strong

peaks in the mass variables M(; jets) and M(jets), which represent the M(!T ) and M(�T ) masses.

To make it easier for the neural network to train, these input variables are normalized to give values of

order 1. This is done by estimating the maximum value of a given variable, and dividing. For example,

for photon transverse energy, E
T , the actual variable used is E

T =130. It is not imperative that the

denominator actually be the maximum value, just that the adjusted value be of order 1.

After an extensive selection process, the following variables have been selected which, together, yield

very good technicolor and background discrimination. The normalizations are shown also:
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1. E
T =130 { Photon transverse energy.

2. ST =350 { This is the sum of the transverse energies, ET , of all jets, the photon and the muon in

the event.

3. M(jets)=200 { Jet mass of the event. This is the magnitude of the four-vector sum over the jets

in the event.

4. �R(j1; j2)=5 { Opening �R between leading (highest ET ) two jets: �R =
p
��2 +��2.

5. M(;jets)�M(jets)
M(;jets) { Reduced mass di�erence, where M(; jets), the photon + jet mass is the

magnitude of the four-vector sum of those objects.

A fuller description of the de�nitions and variable selection process is described in Chapter 5. These

�ve variables are the input nodes for the �rst layer of the neural network.

The Hidden Layer

The neural network is able to identify \contour regions" in physics variable space which have a high

probability of technicolor signal. The number of hidden nodes de�nes the complexity of these N � 1

dimensional contours in variable space, where N is the number of input variables. Typically, on the

order of 2N hidden nodes are used. Currently, the number of hidden nodes is set to 12 with the 5 input

variables. The number of hidden nodes was selected by trying di�erent values ranging from 5 to 20,

and arriving at the smallest number of nodes (12) in which the search results were stable.

As Figure 9.1 illustrates, the lines indicate the information-ow from layer to layer. Each node in

the hidden layer receives information from every node in the input layer. Like the input nodes, each of

the hidden nodes (indexed by j) has a value hj associated with it that also ranges from 0 to 1, where

hj = g

��NinputsX
i

wji � xi
�
� �j

�
: (9.1)

The weights wji and thresholds �j are found numerically as a result of the training process, and the

physics variables are xj . The function g is the sigmoid function shown in Figure 9.2, and models the

\�ring" of the neuron or node when the inputs exceed the threshold �j for that node.
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Figure 9.2 This is the \activation function" used to give the output value at

each of the hidden nodes and the output node, DNN . The function

origin is the threshold value, �, and may be di�erent for each node.

The Output Layer: DNN

Once the neural network is trained, it is a continuous, well-de�ned function of the selected input

physics variables. The �nal output value of the NN is called the neural network discriminant, DNN .

This value is computed by summing the weighted outputs from the hidden layer, subtracting a threshold

and evaluating the result again using the sigmoid function of Figure 9.2. In other words,

DNN = g

��NhiddenX
j

wj1 � hj
�
� �DNN

�
; (9.2)

where hj are the outputs of the hidden layer nodes given by Equation 9.2, wj1 are the weights between

the hidden layer and the single output node, and �DNN
is the �nal threshold value.

The training algorithm adjusts the output value of the NN to be as close to 1 as possible for the

ensemble of signal events, and as close to 0 as possible for the background ensemble, since their type

is known a priori in the training. This is called \supervised" training. In practice, the signal and
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background events will be spread out in DNN with background events tending to the low (0.0) values,

and signal tending to the high (1.0) values.

The weights wij and thresholds � are found by minimizing the error function

E =
1

2Np

NpX
p=1

(D
(p)
NN � t(p))2 (9.3)

using an iterative method, called \back propogation." Np is the number of \patterns" or events used

in training, and t(p) is the known value 1(0) of each signal(background) event. The sum is over all of

the events in the training sample.

The weights and thresholds are updated after each pass (or epoch) on the training events by using

the rule

�!! t+1 = �!! t +��!! t (9.4)

where

��!! t = �� @E
@�!! + ���!! t; (9.5)

and �!! refers to the vector of weights and thresholds of the neural network. The learning rate � is

generally selected to be 0.01, as is the case in this analysis. A momentum term, the second term in

Equation 9.4, is also added to stabilize the learning, where � = 0:9

Unfortunately, even after being fully trained there are cases where some signal events are given values

near 0.0, and background events may have values of DNN near the signal region of 1.0, meaning that

those background events are indistinguishable from technicolor events. Figure 9.3 shows an example

of the output of a trained neural network. As expected, nearly all of the signal events have a DNN

value close to 1.0, where a large proportion of background events are much less than that. However, a

number of background events continue to have high DNN . A cut of DNN > 0:9 would now be a very

e�ective way to eliminate a large portion of the background events, while accepting a relatively large

number of technicolor signal events. This property allows us to perform a focussed search for excesses

in the data indicating a very particular signature.

Figure 9.4 compares data and background passing event selection cuts when applied to trained neural

networks. These plots also show the correspondence between the tag-rate background calculation and

the b-tagged data.
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Training-Sample Selection

Before we can use neural networks as a tool, we must select signal and background event samples

to be used for training. As mentioned earlier, technicolor signal is generated using pythia for many

combinations of M(!T ) and M(�T ). The background sample used for training is a subset of the jj

data. All training samples pass the event selection cuts outlined in Chapter 6, except for the b-tag

requirement, which they are required to speci�cally fail. Hence, the b-tagged events in the search that

are evaluated by the trained neural networks are an independent sample. Typically � 2000 events from

both samples are used in training.

It is also important to ensure that the signal and background samples have the same ET cuts applied

to them so that \trigger turn-on" e�ects in the training samples are minimized. Otherwise, the NN

may assign a high discriminant value (DNN ) to a region in which the data are not completely e�cient

relative to the Monte Carlo signal sample. This would bias the search to a region of variable-space

where a potential signal could not actually be found, and cause the 95% con�dence limits on � � BR

to be arti�cially low. This fact is partially what drove the selection cuts for this search.

Other Considerations for Training

The number of epochs, or times that the samples are \looped over" during training, is also considered.

From 3000 - 5000 epochs are used in this analysis. This was selected by increasing the number of epochs

until the discrimination power of the trained NN reached a stable value.

Because each NN can only search for technicolor in a fairly narrow mass-range, a di�erent NN is

trained for each of the 32 technicolor mass points; hence, each mass point in the search is separately

optimized. Table 8.2 shows the acceptances of MC and background for a DNN > 0:9 cut. As seen in

the table, from 25 to 97% of technicolor monte carlo events pass the this cut, but no more than 7% of

background events pass this cut. Hence, the neural network is an e�ective descriminating tool.
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Figure 9.3 An example output of a neural network trained on a set of untagged

technicolor signal events and a subset of untagged jj data. The

arrow shows where the DNN cut was placed to get the best discrim-

ination between signal and background by �nding the minimum ex-

pected cross-section limit. Chapter 10 discusses the selection of the

DNN cut for each neural network trained at each technicolor mass

point.
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Figure 9.4 These plots show the comparison between the background calcula-

tion as a function of DNN and the b-tagged data for 3 examples

of neural networks. The events here pass the event selections men-

tioned in Section 6. There are 218 b-tagged data events to com-

pare with 32,067 untagged events applied to the tag-rate function.

The �2 comparison indicates good agreement between the data and

background. This visual also shows the lack of evidence for techni-

color events in the data for these 3 mass ranges.
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10 FINAL EVENT SELECTION USING NEURAL NETWORKS

With the neural networks trained on each technicolor mass point, we must now select a DNN cut for

each technicolor mass point to eliminate as many background events as possible while still preserving

a high relative e�ciency of technicolor signal events. The two criteria used to accomplish this are

the \discovery" and the \limit setting" criteria. These criteria depend on the number of events of

background and technicolor MC passing a given DNN cut.

The �rst method maximizes the value of the discovery signi�cance formula:

S(DNN) =
NMCp

NMC +Nbkg

; (10.1)

where NMC and Nbkg are the expected number of technicolor events and background events that pass

a given DNN cut. Recall that Nbkg is calculated by the tag-rate function described in Chapter 7. The

maximization of Equation 10.1 as a function of DNN is used to decide the DNN cut for each technicolor

mass point. This signi�cance is roughly equal to the number of standard deviations of signal above

the the error in the quantity signal+background. The denominator takes this form for two reasons:

to prevent it from going to zero, which also tends to stabilize the results under small changes in the

analysis. The other reason is that if the technicolor hypothesis were true, then the technicolor events

would be mixed into the data sample as well, so those events are included in the denominator. Table

11.1 shows the results of this analysis when the discovery signi�cance is used to determine the neural

network cut for each mass point.

Another criterion for optimizing the DNN cut is to minimize the expected 95% CL cross-section

limit [32]:

�expect95 (DNN ) = �TH � N95(Nbkg)�Nbkg

Nsignal
; (10.2)

where �TH is the cross-section � branching ratio (� � BR) provided by technicolor theory, and Nbkg

and Nsignal are the numbers of background and signal events passing a DNN cut. Once again, Nbkg
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is computed using the tag-rate function. Nsignal includes the � � BR, e�ciency, acceptance, and

luminosity information as discussed in Section 6, and shown in Table 8.2. N95(Nbkg) is the expected

95% CL upper limit on the number of b-tagged events in the data, and is computed by the following

method using various applications of the Poisson probability distribution:

N95(Nbkg) =

1X
k=0

Nk
bkge

�Nbkg

k!
N95(k;Nbkg) (10.3)

and, N95(k;Nbkg) is the numerical solution for N in the equation below:

0:95 = 1�
Pk

i=0N
ie�N=i!Pk

i=0N
i
bkge

�Nbkg=i!
: (10.4)

This method and the \discovery signi�cance" method described above are strictly functions of the

number of MC events and background events accepted for a given DNN cut. The minimization of

Equation 10.2 is the optimization method used to arrive at the DNN cut in order to �nally compute

the 95% con�dence upper limits of the technicolor � �BR on the M(!T ) & M(�T ) mass plane.

In summary, we use two methods to determine the DNN cut: maximizing the discovery signi�cance

or minimizing the expected 95% CL on the technicolor cross-section. The DNN cut is recalculated

based on these criteria and for each technicolor mass point. The plots in Figures 11.7 through 11.17

illustrate the optimization of DNN for each neural network. The dotted line is a graph of �expected95

(using the linear scale on the right side of each plot). The arrow shows where the DNN cut was selected

to minimize �expected95 before computing the full 95% CL upper limit on the technicolor cross-section, as

discussed in the next chapter.
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11 RESULTS

Resonance peaks found in high-energy physics data are analogous to the discrete spectral lines

observed in atomic emission spectrum experiments of the past. Because of the large binding energies

involved in particle physics, the new resonance peaks correspond to new particles, rather than just

excited states. This search has two goals: to search for technicolor particles by searching for peaks

(excess events) in the data relative to the expected number of events. If no large signal is found, to

compute the 95% con�dence-level upper limits. In addition, other experimental searches for technicolor

at CERN and Fermilab have seen no signi�cant excesses, and have produced mass exclusion regions in

technicolor parameter space. These results are summarized in Appendix B and in [33]. Notably, this

analysis is the �rst to use neural networks to search for !T =�T production.

The essential event selection criteria of this analysis have been the following:

� Exactly one photon that passes a standard D� identi�cation

� Two or more jets, which pass standard jet ID

� One of those jets came from a b-quark, as indicated by a � inside the jet \cone"

� A favorable value of the neural network discriminant, thus indicating an event in the data to

resemble a technicolor event

With these reqirements in place, excesses of data above background are compared to the expected

number of technicolor events.

The Search

Table 11.1 contains a few instances of an excess in data one standard deviation (1�) relative to

expected background, where

P (� Nobsjb) =
1X

n=Nobs

Z 1

0

d�
e���n

n!

1p
(2�)�b

e�(��b)
2=2�2b ; (11.1)
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where P (� Nobsjb) is the probability of observing at least Nobs given the background b and error in the

background �b. The parameter � is used to integrate over the Gaussian probability distribution of the

background for each value of n � Nobs tried.

As seen in Table 11.1, the two searches showing excesses well above 1� are the mass{pointsM(!T ) =

160 GeV;M(�T ) = 40 GeV; andM(!T ) = 140 GeV;M(�T ) = 80 GeV. Figures 11.3 through 11.6 show

the neural network variables for technicolor, background, and data for these cases. Indeed, the excesses

do show up where the neural networks are trained to look, i.e. where the signal events peak before

applying the DNN cut.

There are no excesses above 2� of data above the background calculation over the technicolor phase-

space evaluated in this analysis. We now pursue an upper bound on the theoretical � � BR that is

allowed for each technicolor mass point.

The Method for Computing the Technicolor Cross-Section Limits

The 95% con�dence level upper limits on !T =�
0
T production are each computed by numerically

solving the integral equation for �ul [1, 30]:

0:95 =

Z �ul

0

�(�jk; I)d� (11.2)

where �ul is the cross-section (a branching ratio may be included) limit, � is the posterior probability

density that is explained later, k is the number of b-tagged events in the data passing all selection and

neural network cuts, and I is the \prior" information. The prior information includes the errors on the

signal, background, and luminosity as well as the gaussian probability distributions used to describe

those errors. The notation for �(�jk; I) reads \the probability density of � given k data events, and the

prior information, I ." For notational brevity, I use � interchangeably with ��BR, but ultimately, the

upper limit on � �BR is computed.

The probability density �(�jk; I) is not yet known, and its computation is not entirely obvious. Now,
using the Poisson distribution, the probability

P (kj�) = e���k

k!
(11.3)

is the probability of measuring k events in the data, given a predicted mean, �, where the mean is given
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by

� = b+ ��L; (11.4)

where the variable b is the background, � is the technicolor cross-section, � is the technicolor acceptance,

and L is the integrated luminosity taken during D� Run I. So, in e�ect, � is the mean number of data

events expected if the technicolor hypothesis (� > 0) were true. The probability, P , now becomes

P (kj�; b; L; �) = e�(b+��L)(b+ ��L)k

k!
(11.5)

The immediate goal, however, is to compute �(�; b; L; �jk), so Bayes' theorem is applied to accomplish

this. In e�ect, the Poisson probability in equation 11.5 must be \inverted" to give us a function of

cross-section given a measurement of k events in the data. In terms of generic propositions A;B, and

C, Bayes' theorem states:

P (AjBC) = P (BjAC)P (AjC)
P (BjC) ; (11.6)

and allows just such an inversion of the arguments. By inspection, the substitutions for A;B, and C

are the following:

� A � the cross-section is between � and �+d�, the integrated luminosity is between L and L+dL,

the signal e�ciency is between � and �+ d�, and the background is between b and b+ db.

� B � k events are observed in the data

� C � all other prior knowlege, I : The assumption that the errors in b, �, and L are gaussian, and

the \at prior" for � is assumed. The at prior means that a uniform probability distribution is

assigned to the initial distribution in � and represents the fact that no particular mean value of

� is expected a priori.

Inserting this information into Bayes' theorem gives the probability density with respect to �:

�(�; b; L; �jk; I) / P (kj�; b; L; �; I)f�(�jI)P (LjI)P (�jI)P (bjI)g; (11.7)
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The normalization condition

Z 1

0

db

Z 1

0

dL

Z 1

0

d�

Z 1

0

�(�; b; L; �jk; I)d� = 1 (11.8)

�xes the denominator term, P (kjI), required by Bayes' theorem. It is assumed that the quantities

�; L; �; and b are indepedent, and so are the respective probability distributions. The integrals are over

the appropriate Gaussian distributions. For the cross-section, the at prior is used to introduce the

probability density with respect to �:

�(�jI) =

8>><
>>:
1=�max if 0 � � � �max

0 otherwise:

(11.9)

where �max is chosen su�ciently large that it has no e�ect on the �nal probability distribution or the

cross-section limit. The other three probabilities use the Gaussian probability distribution:

P (xjI) =

8>><
>>:

1
�x
p
2�

e�
(x�x)2

2�2 if x > 0

0 ifx � 0:

(11.10)

where x stands for L; b, or �, and �x is the corresponding error in each quantity.

Finally, the integral over the \nuisance parameters" L; �; and b gives the �nal probability density:

�(�jk; I) =
Z 1

0

dL

Z 1

0

d�

Z 1

0

db�(�; b; L; �jk; I): (11.11)

Equation 11.2 is now used to compute the upper limit to the cross-section.

Technicolor 95% cross-section limits

The method for computing the actual value of � � BR95%CL is now applied. The inputs to the

program used by the searches at D� provided by [31], are the following:

1. �signal; ��signal

2. Nbkg ; �Nbkg

3. Ndata
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4.
RLdt and �

RLdt, where the current values being used are 105:0� 6:0 pb�1 according to the D�

luminosity data-base.

Table 11.2 shows the limits calculated for each Technipion and Techniomega mass.

Three Technicolor mass points have been excluded at the 95% CL. They are:

� M(!T ) = 160 GeV;M(�T ) = 80 GeV at 9:15 pb

with � �BRTH = 11:89 pb

� M(!T ) = 180 GeV;M(�T ) = 100 GeV at 5:03 pb

with � �BRTH = 7:57 pb

� M(!T ) = 200 GeV;M(�T ) = 120 GeV at 4:39 pb

with � �BRTH = 4:88 pb

Figure 11.1 shows log plots of the �ve variables used in training the neural networks from one of the

excluded technicolor mass points M(!T ) = 160 GeV;M(�T ) = 80 GeV: All analysis cuts are applied

except for the neural network cut for the left-hand plots, and after the NN cut for the right-hand plots.

One can see here that the neural network cut is very e�ective in eliminating background while keeping

a large fraction of technicolor events.

To give a better idea of how the sensitivity of the limits change with mass, the 90% CL exclusions

are computed as well:

� M(!T ) = 140 GeV;M(�T ) = 100 GeV at 7:99 pb

with � �BRTH = 8:59 pb

� M(!T ) = 180 GeV;M(�T ) = 80 GeV at 3:43 pb

with � �BRTH = 4:19 pb

� M(!T ) = 200 GeV;M(�T ) = 60 GeV at 2:44 pb

with � �BRTH = 2:62 pb

The 90% and 95% CL excluded points are adjacent on the M(!T ) vs. M(�T ) mass plane. The

sensitivity of the analysis increased with M(!T ) and M(�T ). In other words, the neural network

acceptance got a little better for high masses (see Table 8.2). However, the cross-section plummeted

with M(!T ), thus limiting our ability to exclude Technicolor to a 60 GeV{wide region.
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Table 11.1 Results of choosing the DNN cut based on the discovery signi�-

cance, S=
p
S +B. The � deviation is given for the cases where the

number of b-tagged data events exceeds the background calculation.

Masses (GeV) DNN Expected Events

M(!T ) M(�T ) cut MC Obs Bkg P (� Nobsjb) � dev.

140 40 0.810 3.57 11 9.44 � 1.15 0.352300 0.38

140 60 0.880 3.16 3 3.83 � 0.46 0.727200

140 80 0.730 11.28 31 22.55 � 2.62 0.077310 1.42

140 100 0.830 6.45 10 12.86 � 1.48 0.803600

160 40 0.970 3.44 5 1.89 � 0.26 0.046160 1.69

160 60 0.930 2.80 3 4.26 � 0.52 0.788200

160 80 0.790 9.85 11 15.67 � 1.89 0.886200

160 100 0.840 10.15 22 16.95 � 2.07 0.160800 0.99

180 40 0.960 3.78 4 2.10 � 0.31 0.165000 0.97

180 60 0.910 3.46 4 6.07 � 0.76 0.843000

180 80 0.910 4.32 3 8.62 � 1.07 0.988100

180 100 0.770 13.27 14 18.29 � 2.28 0.838700

180 120 0.850 8.11 19 17.71 � 2.20 0.415100 0.21

200 20 0.880 1.19 14 14.95 � 2.06 0.610800

200 40 0.960 2.10 4 2.33 � 0.35 0.210500 0.81

200 60 0.950 2.57 0 3.38 � 0.46 1.000000

200 80 0.890 3.21 3 9.25 � 1.21 0.992000

200 100 0.890 6.84 13 12.69 � 1.61 0.496800 0.01

200 120 0.880 7.80 10 12.49 � 1.61 0.772000

210 90 0.880 3.64 12 13.31 � 1.71 0.656700

210 110 0.800 6.96 22 20.47 � 2.60 0.404200 0.24

220 60 0.940 2.22 0 2.88 � 0.41 1.000000

220 80 0.900 3.62 10 17.20 � 2.27 0.959300

220 100 0.950 2.85 4 4.82 � 0.68 0.696700

220 120 0.820 5.32 16 14.00 � 1.82 0.341400 0.41

260 60 0.950 2.17 4 7.17 � 0.98 0.913200

260 100 0.960 1.88 6 7.32 � 1.03 0.720700

280 40 0.970 1.29 4 6.07 � 0.86 0.839100

280 120 0.840 2.16 13 14.77 � 2.01 0.684800

300 40 0.980 0.67 6 5.02 � 0.74 0.388500 0.29

300 80 0.980 1.33 6 5.67 � 0.79 0.494300 0.02

300 140 0.970 1.53 4 5.47 � 0.76 0.780300
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Table 11.2 Results summary of ��BR limits at the 95% con�dence level. The

DNN cut was selected by minimizing the expected 95% CL, which

is a calculation based only on signal and background events as a

function of DNN (S(DNN ) and B(DNN )).

Masses (GeV) � �BR(pb) DNN Expected Events

M(!T ) M(�T ) Theo. 90% CL 95% CL cut MC Obs Bkg

140 40 9.53 22.78 27.41 0.830 3.39 10 8.51 � 1.03

140 60 9.13 12.60 15.88 0.880 3.16 3 3.83 � 0.46

140 80 15.62 20.82 24.67 0.810 9.03 17 12.92 � 1.50

140 100 8.59 7.99 9.79 0.830 6.45 10 12.86 � 1.48

160 40 5.86 13.10 15.40 0.970 3.44 5 1.89 � 0.26

160 60 5.81 11.12 13.83 0.940 2.42 3 3.11 � 0.38

160 80 11.89 7.16 9.15 0.830 8.53 8 11.73 � 1.42

160 100 9.42 12.68 14.89 0.840 10.15 22 16.95 � 2.07

180 40 3.92 6.49 7.62 0.960 3.78 4 2.10 � 0.31

180 60 3.84 4.72 5.96 0.910 3.46 4 6.08 � 0.76

180 80 4.19 3.43 4.31 0.910 4.33 3 8.62 � 1.07

180 100 7.57 4.10 5.03 0.780 12.99 14 17.37 � 2.17

180 120 5.79 6.99 8.39 0.870 7.62 16 15.23 � 1.92

200 20 2.75 18.52 22.64 0.880 1.19 14 14.95 � 2.07

200 40 2.71 7.97 9.45 0.960 2.10 4 2.33 � 0.35

200 60 2.62 2.44 2.99 0.940 2.82 0 4.39 � 0.59

200 80 2.71 2.92 3.68 0.890 3.21 3 9.25 � 1.21

200 100 4.05 4.96 6.10 0.920 6.00 10 9.35 � 1.21

200 120 4.88 3.49 4.39 0.890 7.41 8 11.21 � 1.46

210 90 2.35 4.62 5.72 0.880 3.64 12 13.31 � 1.71

210 110 3.41 4.65 5.56 0.820 6.65 18 18.60 � 2.37

220 60 1.90 2.16 2.71 0.940 2.22 0 2.88 � 0.41

220 80 1.87 3.90 4.87 0.710 4.54 25 29.13 � 3.81

220 100 2.10 3.44 4.26 0.950 2.84 4 4.82 � 0.68

220 120 2.83 5.20 6.33 0.820 5.33 16 14.00 � 1.82

260 60 1.06 2.00 2.50 0.950 2.17 4 7.17 � 0.98

260 100 1.02 2.41 3.05 0.930 2.14 7 10.07 � 1.37

280 40 0.85 2.90 3.64 0.970 1.29 4 6.07 � 0.86

280 120 0.81 2.61 3.21 0.850 2.12 12 14.53 � 1.98

300 40 0.67 5.88 7.00 0.970 0.70 6 5.56 � 0.81

300 80 0.61 2.01 2.51 0.990 1.21 3 4.69 � 0.67

300 140 0.67 1.76 2.20 0.960 1.62 4 6.24 � 0.86
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Figure 11.1 Shown in this and in the following �gure are the observables used

in training the neural networks. The dashed-line signal is nor-

malized to L = 105 pb�1, and corresponds to one of the mass

points that has been excluded. The left side plots correspond to

data, background, and technicolor events passing event selection

cuts. Each plot on the right side shows the sub-sample of events

passing an optimal DNN cut. The NN was trained on the shown

signal, and the NN response to the signal in the right-hand plots

is consistent. The cut of DNN � 0:83 was selected to minimize

the expected 95% con�dence limit. See Figure 11.9 for the DNN

spectrum in this case.



67

Figure 11.2 Shown are the remaining neural network variables continued from

the previous page. This also shows before and after the optimal

DNN cut for the technicolor mass point M(!T ) = 160 GeV, and

M(�T ) = 80 GeV. This mass point has been excluded at the 95%

CL. See Figure 11.9 for the DNN spectrum in this case.
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Figure 11.3 This case shown is for M(!T ) = 140;M(�T ) = 80 GeV, which is

one of the mass-points having an excess of data over background.

See Table 11.1 for the results of this case. Here also, the right-hand

plots use a DNN cut optimized to maximize the discovery signi�-

cance formula, S=
p
S +B as discussed in Chapter 10. See Figure

11.8 for the DNN spectrum in this case.
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Figure 11.4 Continued from 11.3. See Figure 11.8 for the DNN spectrum in

this case.
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Figure 11.5 The case shown is for M(!T ) = 160;M(�T ) = 40 GeV, which

is one of the mass-points having an excess of data over back-

ground. Also, see Table 11.1. Here also, the DNN cut for the

right-hand plots is set to maximize the discovery signi�cance for-

mula S=
p
S +B. See Figure 11.8 for the DNN spectrum in this

case.
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Figure 11.6 Continued from 11.5. See Figure 11.8 for the DNN spectrum in

this case.
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Figure 11.7 Optimization results. These plots and the ones that follow il-

lustrate the selection of the neural network discriminant (DNN )

cut for every technicolor mass point in this analysis by �nding

the minimum expected 95% CL (dependent only on the technicol-

or and background acceptances). Also shown on each plot are the

95% CL, � �BR, and number of accepted technicolor, data, and

background events passing all cuts including the DNN cut. If the

95% CL shown is less than the ��BR for a mass point, then this

mass point is considered to be excluded. The numbers shown are

the same as in Table 11.2.
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Figure 11.8 Optimization results continued. Compare with Table 11.2.



74

Figure 11.9 Optimization results continued. Compare with Table 11.2.
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Figure 11.10 Optimization results continued. Compare with Table 11.2.
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Figure 11.11 Optimization results continued. Compare with Table 11.2.



77

Figure 11.12 Optimization results continued. Compare with Table 11.2.
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Figure 11.13 Optimization results continued. Compare with Table 11.2.
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Figure 11.14 Optimization results continued. Compare with Table 11.2.
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Figure 11.15 Optimization results continued. Compare with Table 11.2.
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Figure 11.16 Optimization results continued. Compare with Table 11.2.
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Figure 11.17 Optimization results continued. Compare with Table 11.2.
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APPENDIX A PYTHIA PARAMETERS USED TO GENERATE

TECHNICOLOR EVENTS

The following are the parameters used in pythia 6.126 to generate the techncolor events and cross-

sections [5, 6]. In parenthesis are the pythia variable names:

� Process selection:

f + f ! �0T (msub(364)=1)

f + f ! �00T (msub(365)=1)

� �0T and �00T assumed degenerate, so when setting the �T mass, both were set to the same value.

For example, for the case M(�T ) = 100 GeV,

(pmas(51,1)=pmas(53,1)=100.0)

� !T and �0T also assumed degenerate. For the case M(!T ) = 200 GeV,

(pmas(54,1)=pmas(56,1)=200.0)

� The decays of the !T and �0T were forced to �T =�
0
T .

� The decays of the �T and �0T were forced exclusively to bb.

� Parton Distribution function: CTEQ3M (mstp(51)=2)

� sin� = sin�0 = 1=3 { Mixing angle between �T =�
0
T and mass eigenstates

(parp(141) = parj(144) = 0.3333)

� FT = 82 GeV { The �T decay constant

(parp(142) = 82.0)

� QU = QD + 1 = 4=3 { Charge of techniquarks

(parp(143)=1.333)

� NTC = 4 { Number of technicolors

(parp(144)=4.0)
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� CC = CB = C� = 1:0 { Coe�cient of decay to charm, bottom, � respectively

(parp(145)=parp(146)=parp(148)=1.0)

� Ct = 0:0182 { Coe�ceint of technipion decays to top, estimated to be Mb=Mt

(parp(147)= 0.0182)

� C� = 0 { Coe�cient of decay of �T to gg

(parp(149)=0.0)

� C�0 = 4=3 { Coe�cient of decay of �0T

(parp(150)=1.33333)

� MV = MA = 100 { Vector and Axial vector scales, respectively for decays to transverse gauge

bosons and �T 's

(parj(172)=parj(173)=100.0)

� Isospin violating !T =�
0
T amplitude = 0.05

(parj(175)=0.05)
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APPENDIX B OTHER EXPERIMENTAL SEARCHES FOR

TECHNICOLOR

This appendix is a brief synopsis of the searches for the lightest technicolor mesons, the color-singlets

!T ; �
0;�
T , and the �0;�T . I only mention the searches for a signature similiar to the one presented in this

analysis. There are also numerous searches for leptoquarks and color-octet particles, which both have

connections to technicolor phenomenology.

Searches at CERN Large Electron Positron (LEP) Collider Experiments

The L3 collaboration search [34] looks for the signatures

e+e� ! �0T !W+W�;W�
L �

�
T ! l�lbc

! �+T �
�
T ! cbbc

! �0T ! bb

The exclusion plot of Figure B.1 indicates the 95% CL limits on the technicolor production cross section

times branching ratios for all of the processes mentioned. The darkened area indicates the excluded

region, and the light area indicates where the search was not su�ciently sensitive due to the lower

cross-section.

Similarly, the DELPHI collaboration [35] simultaneously searches for the same channels, since it is

also an e+e� experiment. Figure B.2 shows this combination of results.

The LEP measurements are very sensitive, partly due to the \radiative return" e�ect in e+e�

collisions, which causes the energy to vary. In addition, the e+e� cross-section at the �0T resonance is

very large since it mixes with the W�
L . There is a possibility that the LEP searches may have used an

obsolete cross-section calculation as noted in [33], hence comparison with this analysis is only qualitative

at best.
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Figure B.1 The mass exclusion region measured by the L3 collaboration [34].

Searches at Fermilab

The CDF collaboration searches involved the �nal state of lepton + 2 jets with a single b-tag, and

photon + 2 jets with a b-tag:

qq ! W�; ; Z0 ! ��T !W�
L �T ! l��lb+ jet

! ��T ; �
0
T ; !T ! �T ! b+ jet

Figure B.3 shows the 95% mass exclusion limits in the leptonic (l�lb + jets) channel, and �gure B.4

shows the corresponding results in the b+ jets search. Similarly to the LEP measurements, the cross-

section model is not the most up-to-date, and used an older version of pythia (v 6.1) to compute

the cross-sections. The analysis of this thesis uses v 6.126. Regardless of the theoretical cross-section

model, the searches �nd no large deviations (they are less than 2� �) between data and background.
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Figure B.2 The mass exclusion region measured by the DELPHI collaboration

[35].

By re-analysing the Drell-Yan data, the D� collaboration has searched for the unique channel

qq ! �0T ; !T ! e+e�

As with the other searches, no sign�cant deviations were found, and cross-section limits at the 95% CL

were computed as shown in Figure B.5.
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